A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Deshpande, A.

Paper Title Page
MOPEA050 Development of a prototype 15 MeV Electron Linac 187
 
  • T.S. Dixit, S.T. Chavan, R. Krishnan, C.S. Nainwad, S.N. Pethe, K.A. Thakur, T. Tiwari, M.M. Vidwans
    SAMEER, Mumbai
  • A. Deshpande
    Sokendai, Ibaraki
 
 

A successful development of a 6 MeV electron radiotherapy machine at SAMEER, India was reported earlier*. Now a 15 MeV electron linac prototype is designed, developed and tested at our site. We have measured a beam current of 80 mA at the X-ray target attached to the linac. Energy gained by electrons in a cavity chain of about 1.2 m length is measured to be more than 15 MeV using a 6 MW klystron power source. An RF window capable of handling 12kW average power is attached to the linac tube and it is cooled by water. The final linac parameters measured were at par with the designed values. A high voltage modulator and control console for the linac are designed and developed in house. This paper will describe key aspects of the design and development process of the complete system. Also future applications are planned like-dual energy dual mode linac for radiotherapy, cargo scanning system and compact compton X-ray source using this technology is briefed in this paper.


* R.Krishnan et. al. "S band linac tube developmental work in SAMEER", FR5REP083, PAC09, Vancouver, Canada.

 
TUPD089 Status and Future Plan of the Accelerator for Laser Undulator Compact X-ray Source (LUCX) 2111
 
  • M.K. Fukuda, S. Araki, A.S. Aryshev, Y. Honda, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • A. Deshpande
    Sokendai, Ibaraki
  • K. Sakaue, M. Washio
    RISE, Tokyo
  • N. Sasao
    Okayama University, Okayama
 
 

We have developed a compact X-ray source based on inverse Compton scattering of an electron beam and a laser pulse, which is stacked in an optical super-cavity, at LUCX accelerator in KEK. The accelerator consists of a photo-cathode rf-gun and an S-band accelerating tube and produces the multi-bunch electron beam with 100 bunches, 0.5nC bunch charge and 40MeV beam energy. It is planned to upgrade the accelerator and the super-cavity in order to increase the number of X-rays. A new RF gun with high mode separation and high Q value and a new klystron for the gun will be installed to provide good compensation with a high-intensity multi-bunch electron beam. A new optical super-cavity consisting of 4 mirrors is also being developed to increase the stacking power in the cavity and to reduce the laser size at the focal point. The first targets are to produce a multi-bunch electron beam with 1000 bunches, 0.5 nC bunch charge and 5 MeV beam energy in low energy mode and 100bunches, 2 nC and 40 MeV in high energy mode to generate X-rays by inverse Compton scattering. In this paper, the status and future plan of the accelerator will be reported.

 
THPEC026 Experimental Results of RF Gun and Generation of Multi Bunch Beam 4104
 
  • A. Deshpande
    Sokendai, Ibaraki
  • S. Araki, M.K. Fukuda, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • K. Sakaue, M. Washio
    RISE, Tokyo
 
 

At Laser Undulator Compact Source (LUCX) at KEK, we designed and made a new RF Gun with high mode separation of 8.6 MHz and high Q value as compared to earlier guns. This paper presents fabrication details, low power measurements and tuning procedures followed in making the gun cavity. We also discuss in detail, experimentation done using this gun and show the measurement results. Currently we produce 100 bunch per train but we plan to go for 300 or more bunch per train operation. This will make possible to have higher charge available for laser-beam collisions to generate high flux soft X-rays by Inverse Compton Scattering at our setup.