A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Derbenev, Y.S.

Paper Title Page
MOPEA042 Epicyclic Twin-helix Magnetic Structure for Parametric-resonance Ionization Cooling 166
 
  • A. Afanasev, R.P. Johnson
    Muons, Inc, Batavia
  • Y.S. Derbenev
    JLAB, Newport News, Virginia
  • V.S. Morozov
    ODU, Norfolk, Virginia
 
 

Parametric-resonance Ionization Cooling (PIC) is envisioned as the final 6D cooling stage of a high-luminosity muon collider. Implementing PIC imposes stringent constraints on the cooling channel's magnetic optics design. This paper presents a linear optics solution compatible with PIC. Our solution consists of a superposition of two opposite-helicity equal-period and equal-strength helical dipole harmonics and a straight normal quadrupole. We demonstrate that such a system can be adjusted to meet all of the PIC linear optics requirements while retaining large acceptance.

 
MOPD076 A Helical Cooling Channel System for Muon Colliders 870
 
  • K. Yonehara
    Fermilab, Batavia
  • Y.S. Derbenev
    JLAB, Newport News, Virginia
  • R.P. Johnson, M.L. Neubauer
    Muons, Inc, Batavia
 
 

Fast muon beam six dimensional (6D) phase space cooling is essential for muon colliders. The Helical Cooling Channel (HCC) uses hydrogen-pressurized RF cavities imbedded in a magnet system with solenoid, helical dipole, and helical quadrupole components that provide the continuous dispersion needed for emittance exchange and effective 6d beam cooling. A series of HCC segments, each with sequentially smaller aperture, higher magnetic field, and higher RF frequency to match the beam size as it is cooled, has been optimized by numerical simulation to achieve a factor of 105 emittance reduction in a 300 m long channel with only a 40% loss of beam. Conceptual designs of the hardware required for this HCC system and the status of the RF studies and HTS helical solenoid magnet prototypes are described.

 
THPEC071 Highly Polarized Ion Sources for Electron Ion Colliders (EIC) 4220
 
  • V.G. Dudnikov, R.P. Johnson
    Muons, Inc, Batavia
  • Y.S. Derbenev, Y. Zhang
    JLAB, Newport News, Virginia
 
 

The operation of the RHIC facility at BNL and the Electron Ion Colliders (EIC) under development at Jefferson Laboratory and BNL need high brightness ion beams with the highest polarization. Charge exchange injection into a storage ring or synchrotron and Siberian snakes have the potential to handle the needed polarized beam currents, but first the ion sources must create beams with the highest possible polarization to maximize collider productivity, which is proportional to a high power of the polarization. We are developing one universal H-/D- ion source design which will synthesize the most advanced developments in the field of polarized ion sources to provide high current, high brightness, ion beams with greater than 90% polarization, good lifetime, high reliability, and good power efficiency. The new source will be an advanced version of an atomic beam polarized ion source (ABPIS) with resonant charge exchange ionization by negative ions. An integrated ABPIS design will be prepared based on new materials and an optimized magnetic focusing system. Polarized atomic and ion beam formation, extraction, and transport for the new source will be computer simulated.