A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

D'Arcy, R.T.P.

Paper Title Page
MOPEC046 Modelling of the EMMA ns-FFAG Injection Line using GPT 561
 
  • R.T.P. D'Arcy
    UCL, London
  • D.J. Holder, B.D. Muratori
    Cockcroft Institute, Warrington, Cheshire
  • J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
 

EMMA (Electron Machine with Many Applications) is a prototype non-scaling Fixed Field Alternating Gradient (NS-FFAG) accelerator presently under construction at Daresbury Laboratory, UK. The energy recovery linac ALICE will serve as an injector for EMMA within the energy range of 10 to 20 MeV. The injection line consists of a symmetric 30° dogleg to extract the beam from ALICE, a matching section and a tomography section for transverse emittance measurements. This is followed by a transport section to the injection point of the EMMA ring. Commissioning of the EMMA injection line started in early 2010. A number of different injection energy and bunch charge regimes are planned; for some of the regimes the effects of space charge will be significant. It is therefore necessary to model the electron beam transport in this line using a code capable of both calculating the effect of, and compensating for, space charge. Therefore the General Particle Tracer (GPT) code has been used. A range of injection beam parameters have been modelled for comparison with experimental results.