A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Dammann, J.A.

Paper Title Page
WEPEC006 Towards PLM-based Quality Assurance in the Fabrication of the Superconducting Cavities for the European XFEL 2899
 
  • L. Hagge, J.A. Dammann, J. Iversen, J. Kreutzkamp, W. Singer
    DESY, Hamburg
 
 

For the series production of s.c. cavities for European XFEL, thorough quality assurance procedures are under preparation to ensure that all cavities satisfy their performance requirements. Each cavity needs to pass a number of quality gates at different levels of completion. At each quality gate, the so-far available manufacturing data and documentation is reviewed and approved by the XFEL cavity production team. To ensure reliable and repeatable procedures with timely responses, the QA efforts are supported by the DESY Product Lifecycle Management (PLM) System, aka DESY EDMS. The EDMS manages fabrication data, coordinates acceptance tests, manages signoffs and provides fabrication progress monitoring. In particular, the EDMS tracks the entire history of all individual cavities, their parts and their semi-finished products. The setup benefits from experience which has been gained at DESY in the cavity production for FLASH. The poster explains the planned QA procedures and customization of the EDMS, and reports inital experience.

 
THOARA02 Preparation Phase for the 1.3 GHz Cavity Production of the European XFEL 3633
 
  • W. Singer, S. Aderhold, A. Brinkmann, R. Brinkmann, J.A. Dammann, J. Iversen, G. Kreps, L. Lilje, A. Matheisen, W.-D. Möller, D. Reschke, J. Schaffran, A. Schmidt, J.K. Sekutowicz, X. Singer, H. Weise
    DESY, Hamburg
  • P.M. Michelato
    INFN/LASA, Segrate (MI)
 
 

The preparation phase for the European XFEL cavity production includes a number of actions. Material issues: qualification of high purity niobium vendors, verifying of large grain material as a possible option, construction of the scanning device for the niobium sheets. Mechanical fabrication issues: accommodation of the TESLA cavity design to the XFEL demands, device construction for RF measurement of components, integration of the helium tank and it's welding to the cavity into the fabrication sequence, documentation and data transfer, application of a new high resolution camera for inspection of the inside surface. Treatment and RF measurement: establishing the XFEL recipe, in particular the final surface treatment (final 40 μm EP or short 10 μm Flash BCP), and the cavity preparation strategy (vertical acceptance test with or without helium tank welded, with or without assembly of HOM antennas), construction of the cavity tuning machine. About 50 prototype cavities are produced at the industry, treated (partially in industry and partially at DESY) and RF-tested at DESY. The XFEL requirements are fulfilled with a yield of approx. 90%.

 

slides icon

Slides

 
THPEB071 Information Management in the Civil Construction of the European XFEL 4032
 
  • L. Hagge, N. Bergel, J.A. Dammann, S. Eucker, J. Kreutzkamp, D. Szepielak, P. Tumidajewicz, N. Welle
    DESY, Hamburg
 
 

Building an accelerator facility brings together civil construction and mechanical engineering, two trades with very different working cultures, practices and tool sets: While construction sites are traditionally paper-based and 2D oriented, the accelerator and its infrastructure are completely modeled in 3D. At the European XFEL, methods and tools known from plant construction were introduced to civil construction to enable efficient collaboration of all trades. Integrated 3D models encompass design models of all technical subsystems. An electronic "XFEL room book" captures requirements and manages assignments of space, infrastructure and equipments in the buildings. The DESY Engineering Data Management System (EDMS) manages and links the information with additional documentation. Electronic workflows coordinate e.g. reviews and change management. 3D models, room book and documentation databases together constitute the so-called "Building Information Model" (BIM). The BIM addresses the entire building lifecycle and is a basis for later facility operation. The poster describes information management procedures, tools and experience in the civil construction of the European XFEL.