A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Cummings, M.A.C.

Paper Title Page
WEPE071 Integrated Low Beta Region Muon Collider Detector Design 3506
 
  • M.A.C. Cummings
    Muons, Inc, Batavia
  • D. Hedin
    Northern Illinois University, DeKalb, Illinois
 
 

Muon Col­lid­ers pro­duce high rates of un­want­ed par­ti­cles near the beams in the de­tec­tor re­gions. Pre­vi­ous de­signs have used mas­sive shield­ing to re­duce these back­grounds, at a cost of cre­at­ing dead re­gions in the de­tec­tors. To op­ti­mize the physics from the ex­per­i­ments, new ways to in­stru­ment these re­gions are need­ed. Since the last study of a muon col­lid­er de­tec­tor in the 1990s, new types of de­tec­tors, such as solid state pho­ton sen­sors that are fine-grained, in­sen­si­tive to mag­net­ic fields, ra­di­a­tion-re­sis­tant, fast, and in­ex­pen­sive have be­come avail­able. These can be high­ly seg­ment­ed to op­er­ate in the re­gions near the beams. We re-eval­u­ate the de­tec­tor de­sign, based on new sen­sor tech­nolo­gies. Sim­u­la­tions that in­cor­po­rate con­di­tions in re­cent muon col­lid­er in­ter­ac­tion re­gion de­signs are used to re­vise muon col­lid­er de­tec­tor pa­ram­e­ters based on par­ti­cle type and oc­cu­pan­cy. Shield­ing schemes are stud­ied for op­ti­miza­tion. Novel schemes for the over­all muon col­lid­er de­sign, in­clud­ing "split-de­tec­tors", are con­sid­ered.

 
THPEA047 Dielectric Loaded RF Cavities for Muon Facilities 3783
 
  • M. Popovic, A. Moretti
    Fermilab, Batavia
  • C.M. Ankenbrandt, M.A.C. Cummings, R.P. Johnson, M.L. Neubauer
    Muons, Inc, Batavia
 
 

Al­ter­na­tive RF cav­i­ty fab­ri­ca­tion tech­niques for ac­cel­er­a­tor ap­pli­ca­tions at low fre­quen­cies are need­ed to im­prove man­u­fac­tura­bil­i­ty, re­li­a­bil­i­ty and cost. RF cav­i­ties below 800 MHz are large, take a lot of trans­verse space, in­crease the cost of in­stal­la­tion, are dif­fi­cult to man­u­fac­ture, re­quire sig­nif­i­cant lead times, and are ex­pen­sive. Novel RF cav­i­ties par­tial­ly load­ed with a ce­ram­ic for ac­cel­er­a­tor ap­pli­ca­tions will allow small­er di­am­e­ter cav­i­ties to be de­signed and built. The man­u­fac­tur­ing tech­niques for par­tial­ly load­ed cav­i­ties will be ex­plored. A new 200MHz cav­i­ty will be built for the Fer­mi­lab Pro­ton Source to im­prove the lon­gi­tu­di­nal emit­tance and en­er­gy sta­bil­i­ty of the linac beam at in­jec­tion to the Boost­er. A cav­i­ty de­signed for 400 MHz with a ce­ram­ic cylin­der will be test­ed at low power at cryo­genic tem­per­a­tures to test the change in Qo due to the alu­mi­na ce­ram­ic. Tech­niques will be ex­plored to de­ter­mine if it is fea­si­ble to change the cav­i­ty fre­quen­cy by re­plac­ing an an­nu­lar ce­ram­ic in­sert with­out ad­verse­ly ef­fect­ing high power cav­i­ty per­for­mance.

 
THPD074 Using Project X as a Proton Driver for Muon Colliders and Neutrino Factories 4452
 
  • G. Flanagan, R.J. Abrams, C.M. Ankenbrandt, M.A.C. Cummings, R.P. Johnson
    Muons, Inc, Batavia
  • M. Popovic
    Fermilab, Batavia
 
 

The de­signs of ac­cel­er­a­tor sys­tems that will be need­ed to trans­form Fer­mi­lab's Pro­ject X into a high-pow­er pro­ton driv­er for a muon col­lid­er and/or a neu­tri­no fac­to­ry are dis­cussed. These ap­pli­ca­tions re­quire sev­er­al megawatts of beam power de­liv­ered in tens or hun­dreds of short mul­ti-GeV bunch­es per sec­ond, re­spec­tive­ly. Pro­ject X may re­quire a linac ex­ten­sion to high­er en­er­gy for this pur­pose. Other major sub­sys­tems that are like­ly to be need­ed in­clude stor­age rings to ac­cu­mu­late and short­en the pro­ton bunch­es and an ex­ter­nal beam com­bin­er to de­liv­er mul­ti­ple bunch­es si­mul­ta­ne­ous­ly to the pion pro­duc­tion tar­get.