A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Collomb, N.A.

Paper Title Page
WEPE092 Mechanical and Vacuum Design of the Wiggler Section of the ILC Damping Rings 3563
 
  • O.B. Malyshev
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • N.A. Collomb, J.M. Lucas, S. Postlethwaite
    STFC/DL, Daresbury, Warrington, Cheshire
  • M. Korostelev
    The University of Liverpool, Liverpool
  • A. Wolski
    Cockcroft Institute, Warrington, Cheshire
  • K. Zolotarev
    BINP SB RAS, Novosibirsk
 
 

A vacuum vessel design of wiggler sections should meet a few challenging specification. The SR power of about 40 kW is generated in each wiggler. Expanding fan of SR radiation reaches the beam vacuum chamber walls in the following wiggler and may cause the following problem: massive power dissipation on vacuum chamber walls inside the cryogenic vessel, radiation damage of superconducting coil, high photo-electron production rate that cause an e-cloud build-up to unacceptable level. Therefore this power should be absorbed in the places where these effects are tolerable or manageable. A few possible solutions for tackling all SR related problems as well as vacuum design are discussed in the paper in details.

 
WEPE094 SR Power Distribution along Wiggler Section of ILC DR 3569
 
  • O.B. Malyshev
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • N.A. Collomb, J.M. Lucas, S. Postlethwaite
    STFC/DL, Daresbury, Warrington, Cheshire
  • M. Korostelev
    The University of Liverpool, Liverpool
  • A. Wolski
    Cockcroft Institute, Warrington, Cheshire
  • K. Zolotarev
    BINP SB RAS, Novosibirsk
 
 

A 374-m long wiggler section is a key part of ILC damping ring that should alloy reaching a low beam emittance for the ILC experiment. Synchrotron radiation generated by the beam in the wigglers should be absorbed by different components of vacuum vessel, including specially designed absorbers. The optimisation of the mechanical design, vacuum system and anti-e-cloud mitigation requires accurate calculation of the SR power distribution. The angular power distribution from a single wiggler was calculated with in-house developed software. Then the superposition of SR from all wigglers allows calculating power distribution for all components along the wiggler section and the downstream straight section.

 
WEPE095 Impedance and Single-bunch Instabilities in the ILC Damping Ring 3572
 
  • M. Korostelev, O.B. Malyshev, A. Wolski
    Cockcroft Institute, Warrington, Cheshire
  • N.A. Collomb, J.M. Lucas, S. Postlethwaite
    STFC/DL, Daresbury, Warrington, Cheshire
  • A.J.P. Thorley
    The University of Liverpool, Liverpool
 
 

The longitudinal wake fields have been calculated by using 3D code, CST Particle Studio, for a number of different vacuum chamber components of the 6.4 km ILC damping ring design. Based on the results, studies of bunch lengthening and single-bunch instabilities have been carried out. Bunch lengthening from a particle tracking code are compared with results from numerical solution of the Haissinski equation. The tracking code is used to predict the threshold for single-bunch instabilities.