Paper | Title | Page |
---|---|---|
THPEC033 | Eddy Current Studies From the Undulator-based Positron Source Target Wheel Prototype | 4125 |
|
||
The efficiency of future positron sources for the next generation of high-energy particle colliders (e.g. ILC, CLIC, LHeC) can be improved if the positron-production target is immersed in the magnetic field of adjacent capture optics. If the target is also rotating due to heat deposition considerations then eddy currents may be induced and lead to additional heating and stresses. In this paper we present data from a rotating target wheel prototype for the baseline ILC positron source. The wheel has been operated at revolution rates up to 1800rpm in fields of the order of 1 Tesla. Comparisons are made between torque data obtained from a transducer on the target drive shaft and the results of finite-element simulations. Rotordynamics issues are presented and future experiments on other aspects of the positron source target station are considered. |
||
TUPE052 | The ALPHA-X Beam Line: towards a Compact FEL | 2263 |
|
||
Recent progress in developing laser-plasma accelerators is raising the possibility of a compact coherent radiation source that could be housed in a medium sized university department. Furthermore, since the duration of electron bunches from laser-plasma wakefield accelerators is determined by the relativistic plasma wavelength, radiation sources based on these accelerators can produce pulses with femtosecond durations. Beam properties from laser-plasma accelerators have been traditionally thought of as not being of sufficient quality to produce amplification. Our work shows that this is not the case. Here we present a study of the beam characteristics of a laser-plasma accelerator and the compact ALPHA-X (Advanced Laser Plasma High-energy Accelerators towards X-rays) FEL. We discuss the implementation of a focussing system consisting of a triplet of permanent magnet quadrupoles and a triplet of electromagnetic quadrupoles*. We will present a study of the influence of beam transport on FEL action in the undulator, paying particular attention to bunch dispersion in the undulator. This is an important step for developing a compact synchrotron source or a SASE free-electron laser. *The design of these devices has been carried out using the GPT code, which considers space charge effects and allows a realistic estimate of electron beam properties along the beam line. |
||
TUPE096 | Recent Developments on ALICE (Accelerators and Lasers In Combined Experiments) at Daresbury Laboratory | 2350 |
|
||
Progress made in ALICE (Accelerators and Lasers In Combined Experiments) commissioning and a summary of the latest experimental results are presented in this paper. After an extensive work on beam loading effects in SC RF linac (booster) and linac cavities conditioning, ALICE can now operate in full energy recovery mode at the bunch charge of 40pC, the beam energy of 30MeV and train lengths of up to 100us. This improved operation of the machine resulted in generation of coherently enhanced broadband THz radiation with the energy of several tens of uJ per pulse and in successful demonstration of the Compton Backscattering x-ray source experiment. The next steps in the ALICE scientific programme are commissioning of the IR FEL and start of the research on the first non-scaling FFAG accelerator EMMA. Results from both projects will be also reported. |
||
WEPD018 | Status of COLDDIAG: a Cold Vacuum Chamber for Diagnostics | 3126 |
|
||
One of the still open issues for the development of superconducting insertion devices is the understanding of the beam heat load. With the aim of measuring the beam heat load to a cold bore and the hope to gain a deeper understanding in the beam heat load mechanisms, a cold vacuum chamber for diagnostics is under construction. The following diagnostics will be implemented: i) retarding field analyzers to measure the electron flux, ii) temperature sensors to measure the total heat load, iii) pressure gauges, iv) and mass spectrometers to measure the gas content. The inner vacuum chamber will be removable in order to test different geometries and materials. This will allow the installation of the cryostat in different synchrotron light sources. COLDDIAG will be built to fit in a short straight section at ANKA. A first installation at the synchrotron light source DIAMOND is under discussion. Here we describe the technical design report of this device and the planned measurements with beam. |
||
THPEC037 | Design of a Pulsed Flux Concentrator for the ILC Positron Source | 4137 |
|
||
The positron source at a future TeV scale electron linear collider will need to generate positrons at a rate two orders of magnitude larger than have been previously achieved. We report on a design of a 3.5 Tesla pulsed flux concentrator magnet which uses liquid nitrogen cooling of the flux concentrator plates to reduce the electrical resistance leading to reduced energy deposition and the ability to generate the required 1 ms pulse duration. This magnet can double the collection efficiency of positrons emitted from the target. |
||
THPEC090 | The EMMA Non-scaling FFAG | 4266 |
|
||
The Electron Model for Many Applications (EMMA) will be the World's first non-scaling FFAG and is under construction at the STFC Daresbury Laboratory in the UK. Construction is due for completion in March 2010 and will be followed by commissioning with beam and a detailed experimental programme to study the functioning of this type of accelerator. This paper will give an overview of the motivation for the project and describe the EMMA design and hardware. The first results from commissioning will be presented in a separate paper. |