A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Busch, M.

Paper Title Page
MOPD032 Superconducting CH-Cavity Development 753
 
  • M. Busch, M. Amberg, F.D. Dziuba, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main
  • W.A. Barth
    GSI, Darmstadt
 
 

At the Institute for Applied Physics a superconducting CH-Cavity (Crossbar H-Mode) has been developed. It is the first multi-cell drift tube cavity for the low and medium energy range of proton and ion linacs. A 19 cell, β = 0.1 prototype cavity has been fabricated and tested successfully with a voltage of 5.6 MV corresponding to gradients of 7 MV/m. The construction of a new superconducting 325 MHz 7-gap CH-cavity has started. This cavity has an optimized geometry with respect to tuning possibilities, high power RF coupling, minimized end cell lengths and options for surface preparation. Static tuning is carried out by small niobium cylinders on the girders. Dynamic tuning is performed by a slow bellow tuner driven by a step motor and a fast bellow tuner driven by a piezo. Additional thermal and mechanical simulations have been performed. It is planned to test the cavity with a 10 mA, 11.4 AMeV (β = 0.158) beam delivered by the Unilac at GSI. Another cavity (f = 217 MHz, β = 0.059) is currently under development for the cw Heavy Ion Linac at GSI. It is the first of nine sc CH-Cavities planned for this project covering an energy range from 1.4 to 7.3 AMeV.

 
MOPD037 Recent Studies on a 3-17MeV DTL for EUROTRANS with Respect to RF Structures and Beam Dynamics 768
 
  • C. Zhang, M. Busch, F.D. Dziuba, H. Klein, H. Podlech, U. Ratzinger
    IAP, Frankfurt am Main
 
 

EUROTRANS is a EUROpean Research Programme for the TRANSmutation of High Level Nuclear Waste in an Accelerator-Driven System. Frankfurt University is responsible for the development of the 352MHz injector which mainly consists of a 3MeV RFQ and a 3-17MeV CH-DTL. Based on the beam dynamics design, the CH-cavities were designed with the concern to optimize the RF properties. In the cavity design, the tube-gap configurations were modified, so the beam dynamics has been adjusted to fit the new effective gap voltage profiles accordingly. A comparison of the beam dynamics results before and after the RF optimization is presented.