Paper | Title | Page |
---|---|---|
TUPEA067 | Preliminary Ground Motion Measurements at LNF Site for the Super B Project | 1482 |
|
||
Following previous measurements, more detailed preliminary ground motion measurements have been performed at the LNF site for the Super B project site characterization. First, results of vertical ground motion measurements done during 18 hours are shown in order to get an idea of the evolution of the ground motion amplitude with time. Secondly, measurements of ground motion (in the 3 directions of space) were performed at different locations on surface in order to evaluate and to compare the influence of various vibration sources. Then, results of ground motion coherence measured for different distances at two locations close to each other but with soft and rigid floor are compared. These measurements are also compared to the ones done in the ATF2 beam line where a special floor was built for stability. By this way, the results reveal that the LNF is a good site to use ground motion coherence properties for stability like it has been done for ATF2. |
||
TUPEB003 | The SuperB Project Accelerator Status | 1518 |
|
||
The SuperB project is an international effort aiming at building in Italy a very high luminosity e+e- (1036 cm-2 sec-1) asymmetric collider at the B mesons cm energy. The accelerator design has been extensively studied and changed during the past year. The present design, - based on the new collision scheme, with large Piwinski angle and the use of 'crab' sextupoles, which has been successfully tested at the DAPHNE Phi-Factory at LNF Frascati, - provides larger flexibility, better dynamic aperture and in the Low Energy Ring spin manipulation sections, needed for having longitudinal polarization of the electron beam at the Interaction Point. The Interaction Region has been further optimized in terms of apertures and reduced backgrounds in the detector. The injector complex design has been also updated. A summary of the design status, including details on lattice and spin manipulation will be presented in this paper. |