A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Boutin, D.

Paper Title Page
MOPEB024 A Homogeneous Superconducting Combined Multipole Magnet for the Large Acceptance Spectrometer S3, based on Flat Racetrack Coils 328
 
  • O. Delferrière, D. Boutin, A. Dael, A. Drouart, C. Mayri, J. Payet, J.-M. Rifflet
    CEA, Gif-sur-Yvette
 
 

S3 (Super Separator Spectrometer) [1] is a future device designed for experiments with the very high intensity heavy ion stable beams of SPIRAL2. It will be set-up at the exit of the linear accelerator LINAG at GANIL (Caen, France). It will include a target resistant to very high intensities, a first stage momentum achromat for primary beam suppression, a second stage mass spectrometer and a dedicated detection system. This mass spectrometer includes a set of four large aperture quadrupole triplets with embedded multipolar corrections. These magnets are a combination of three multipoles which could be realized with superconductor wound in flat racetrack coils. To enable the primary beam extraction one triplet has to be opened on one side, which requires a careful design of such a multipolar magnet. This paper describes the opened multipole geometry. It is adapted to large apertures as demonstrated by Opera 3d© magnetic simulations [2], including harmonic analysis and integral field homogeneity.

 
THPD079 Optical Studies for the Super Separator Spectrometer S3 4464
 
  • D. Boutin, M. Authier, F. Dechery, O. Delferrière, A. Drouart, J. Payet, D. Uriot
    CEA, Gif-sur-Yvette
  • M. Amthor, H. Savajols, M.-H. Stodel
    GANIL, Caen
  • S.L. Manikonda, J.A. Nolen
    ANL, Argonne
 
 

S3 (Super Separator Spectrometer) [1] is a future device designed for experiments with the high intensity heavy ion stable beams of SPIRAL2 [2] at GANIL (Caen, France). It will include a target resistant to these very high intensities, a first stage momentum achromat for primary beam extraction and suppression, a second stage mass spectrometer and a dedicated detection system. This spectrometer includes large aperture quadrupole triplets with embedded multipolar corrections. To enable the primary beam extraction one triplet has to be opened on one side, which requires an appropriate design of such a multipolar magnet. The final mass separation power required for S3 needs a careful design of the optics with a high level of aberration correction. Multiple symmetric lattices were studied for this purpose. A 4-fold symmetric lattice and the achieved results are described in this paper.


[1] A. Drouart et al., Nucl. Phys. A 834 (2010) 747c. [2] SPIRAL2, http://pro.ganil-spiral2.eu/spiral2