A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Bolton, P.R.

Paper Title Page
MOPEA013 Laser-driven Proton Accelerator for Medical Application 88
 
  • M. Nishiuchi, P.R. Bolton, T. Hori, K. Kondo, A.S. Pirozhkov, A. Sagisaka, H. Sakaki, A. Yogo
    JAEA, Ibaraki-ken
  • Y. Iseki, T. Yoshiyuki
    Toshiba, Tokyo
  • S. Kanazawa, H. Kiriyama, M. Mori, K. Ogura, S. Orimo
    JAEA/Kansai, Kyoto
  • A. Noda, H. Souda, H. Tongu
    Kyoto ICR, Uji, Kyoto
  • T. Shirai
    NIRS, Chiba-shi
 
 

The in­ter­ac­tion be­tween the high in­ten­si­ty laser and the solid tar­get pro­duces a strong elec­tro­stat­ic pro­ton ac­cel­er­a­tion field (1 TV/m) with ex­traor­di­nary small size, con­tribut­ing to down­siz­ing of the par­ti­cle ac­cel­er­a­tor. The pro­ton beam ex­hibits sig­nif­i­cant fea­tures. hav­ing very small source size(~10 um), short pulse du­ra­tion (~ps) and very low trans­verse emit­tance. How­ev­er it is a di­verg­ing beam (half angle of ~10 deg) with wide en­er­gy spread of ~100 %. Be­cause of these pe­cu­liar char­ac­ter­is­tics the pro­ton beam at­tracts many fields for ap­pli­ca­tions in­clud­ing med­i­cal ap­pli­ca­tions. To pre­serve these pe­cu­liar char­ac­ter­is­tics, which are not pos­sessed by those beams from the con­ven­tion­al ac­cel­er­a­tors, to­wards the ir­ra­di­a­tion points, we need to es­tab­lish a pe­cu­liar beam trans­port line. As the first step, here we re­port the demon­stra­tion of the pro­to-type laser-driv­en pro­ton med­i­cal ac­cel­er­a­tor beam line in which we com­bine the laser-driv­en pro­ton source with the beam trans­port tech­nique al­ready es­tab­lished in the con­ven­tion­al ac­cel­er­a­tor for the pur­pose of com­par­i­son be­tween the data and the par­ti­cle trans­port sim­u­la­tion code, PARMI­LA*.


*Harunori Takeda, 2005, Parmila LANL (LA-UR-98-4478).

 
MOPEA015 Calculation of Radiation Shielding for Laser-driven Hadron Beams Therapeutic Instrument 94
 
  • H. Sakaki, P.R. Bolton, T. Hori, K. Kondo, M. Nishiuchi, F. Saito, H. Takahashi, M. Ueno, A. Yogo
    JAEA, Ibaraki-ken
  • H. Iwase
    KEK, Ibaraki
  • K. Niita
    RIST, Ibaraki
 
 

The con­cept of a com­pact ion par­ti­cle ac­cel­er­a­tor has be­come at­trac­tive in view of re­cent progress in laser-driv­en hadrons ac­cel­er­a­tion. The Photo Med­i­cal Re­search Cen­tre (PMRC) of JAEA was es­tab­lished to ad­dress the chal­lenge of laser-driv­en ion ac­cel­er­a­tor de­vel­op­ment for hadrons ther­a­peu­tic. In the de­vel­op­ment of the in­stru­ment, it is nec­es­sary to do the bench-mark of the amount of the dif­fer­ent types of ra­di­a­tion by the sim­u­la­tion code for shield­ing. The Monte Carlo Par­ti­cle and Heavy Ion Trans­port code (PHITS) was used for bench-mark the dose on laser-shot ra­di­a­tions of short du­ra­tion. The code pre­dicts rea­son­ably well the ob­served total dose as mea­sured with a glass dosime­ter in the laser-driv­en ra­di­a­tions.

 
THPD039 Proton Generation Driven by a High Intensity Laser Using a Thin-foil Target 4366
 
  • A. Sagisaka, P.R. Bolton, S.V. Bulanov, H. Daido, T. Esirkepov, T. Hori, S. Kanazawa, H. Kiriyama, K. Kondo, S. Kondo, M. Mori, Y. Nakai, M. Nishiuchi, K. Ogura, H. Okada, S. Orimo, A.S. Pirozhkov, H. Sakaki, F. Sasao, H. Sasao, T. Shimomura, A. Sugiyama, H. Sugiyama, M. Tampo, M. Tanoue, D. Wakai, A. Yogo
    JAEA, Kyoto
  • I.W. Choi, J. Lee
    APRI-GIST, Gwangju
  • H. Nagatomo
    ILE Osaka, Suita
  • K. Nemoto, Y. Oishi
    Central Research Institute of Electric Power Industry, Yokosuka-shi, Kanagawa
 
 

High-in­ten­si­ty laser and thin-foil in­ter­ac­tions pro­duce high-en­er­gy par­ti­cles, hard x-ray, high-or­der har­mon­ics, and ter­a­hertz ra­di­a­tion. A pro­ton beam driv­en by a high-in­ten­si­ty laser has re­ceived at­ten­tion as a com­pact ion source for med­i­cal ap­pli­ca­tions. We have per­formed the high in­ten­si­ty laser-mat­ter in­ter­ac­tion ex­per­i­ments using a thin-foil tar­get ir­ra­di­at­ed by Ti:sap­phire laser (J-KAREN) at JAEA. In this laser sys­tem, the pulse du­ra­tion is 40 fs (FWHM). The laser beam is fo­cused by an off-ax­is parabol­ic mir­ror at the tar­get. The es­ti­mat­ed peak in­ten­si­ty is ~5x1019 W/cm2. We have de­vel­oped on-line real time mon­i­tors such as a time-of-flight pro­ton spec­trom­e­ter which is placed be­hind the tar­get and in­ter­fer­om­e­ter for elec­tron den­si­ty pro­file mea­sure­ment of pre­formed plas­ma. We ob­served the max­i­mum pro­ton en­er­gy of ~7 MeV.