Paper | Title | Page |
---|---|---|
MOPEC075 | Status of the RAL Front End Test Stand | 642 |
|
||
The Front End Test Stand (FETS) under construction at the Rutherford Appleton Laboratory is the UK's contribution to research into the next generation of High Power Proton Accelerators (HPPAs). HPPAs are an essential part of any future Spallation Neutron Source, Neutrino Factory, Muon Collider, Accelerator Driven Sub-critical System, Waste Transmuter etc. FETS will demonstrate a high quality, high intensity, chopped H-minus beam and is a collaboration between RAL, Imperial College and the Universtity of Warwick in the UK and the Universidad del Pais Vasco in Spain. This paper describes the current status and future plans of FETS. |
||
MOPEC078 | Commissioning of the Low Energy Beam Transport of the Front End Test Stand | 648 |
|
||
The Front End Test Stand (FETS) at the Rutherford Appleton Laboratory is intended to demonstrate the early stages of acceleration (0-3 MeV) and beam chopping required for high power proton accelerators, including proton drivers for pulsed neutron spallation sources and neutrino factories. A Low Energy Beam Transport (LEBT), consisting of three solenoids and four drift sections, is used to transport the H- beam from the ion source to the FETS Radio Frequency Quadrupole. We present the status of the installation and commissioning of the LEBT, and compare particle dynamics simulations with preliminary measurements of the H- beam transport through the LEBT. |
||
MOPE049 | Beam Stop Design and Construction for the Front End Test Stand at ISIS | 1080 |
|
||
A Front End Test Stand is being built at the Rutherford Appleton Laboratory in the UK to demonstrate a chopped H− beam of sufficiently high beam quality for future high-power proton accelerators (HPPA). The test stand consists on a negative Hydrogen ion source, a solenoid LEBT, a 324 MHz four vane RFQ, a MEBT composed of rebunching cavities and choppers and a set of diagnostics ending with a beam stop. The beam stop, which has to accept a 3 MeV, 60 mA, 2 ms, 50 Hz (10% duty factor) H− beam, consists of a coaxial double cone configuration where the inner cone's inner surface is hit by the beam and the inter-cone gap is cooled by high-speed water. The cones are situated inside a water tank and mounted at one end only to allow thermal expansion. In order to minimize both prompt and induced radiation pure aluminium is used, but the poor mechanical properties of pure aluminium are overcome by employing a metal spinning process that increases the yield strength to several times the original value of the non-deformed material. CFD and FEM codes have been used to avoid high temperature gradients, to minimize thermal stresses, and to minimize fatigue caused by the pulsed beam. |
||
TUPEA055 | Design and Implementation of a Pulsed Digital LLRF System for the RAL Front End Test Stand | 1458 |
|
||
Design, implementation and some practical results of the pulsed digital LLRF system (amplitude, phase and tuning loops) of the RFQ for the ISIS front end test stand are presented. The design is based on a fast analog front-end for RF-baseband conversion and a model-based Virtex-4 FPGA unit for signal processing and PI regulation. Complexity of the LLRF timing is significantly reduced and the LLRF requirements are fulfilled by utilizing the RF-baseband conversion method compared to the conventional RF-IF approach. Validity of the control loops is ensured practically by hardware-in-the-loop co-simulation of the system in MATLAB-Simulink using an aluminium mock-up cavity. It was shown through extensive tests that the LLRF system meets all the requirements including amplitude and phase stability, dynamic range, noise level and additionally provides a full amplitude and phase control range and a phase margin larger than 90 degrees for loop stability. |
||
THPEC068 | First Simulation Tests for the Bilbao Accelerator Ion Source Test Stand | 4211 |
|
||
The rationale behind the Bilbao Accelerator Ion Source Test Stand (ITUR) project is to perform a comparison between different kinds of hydrogen ion sources using the same beam diagnostics setup. In particular, a direct comparison will be made in terms of the emittance characteristics of Penning-type sources such as those currently being used in ISIS (UK) and those of microwave type such as CEA-Saclay and INFN. The aim here pursued is to build an Ion Source Test Stand where virtually any type of source can be tested and, thus, compared to the results of other sources under the same gauge. It would then be possible to establish a common ground for effectively comparing different ion sources. The work here presented reports on the first simulations for the H-/H+ extraction system, as well the devices that conform the diagnostic vessel: Faraday Cup, Pepperpot and Retarding Potential Analyzer (RPA), among others. |
||
THPEC069 | Beam Dynamics Studies on the Radio-Frequency Quadrupole for the Bilbao Accelerator | 4214 |
|
||
The main objective of the Bilbao Front End Test Stand (ETORFETS) is to set up a facility to demonstrate experimentally the design ideas for the future ESS LINAC that are being proposed in discussion forums by the technical scientific community. ETORFETS is focused on the first stage of the linear accelerator, namely, that of the Radio-Frequency Quadrupole (RFQ) and its pre and post beam transport systems. The RFQ bunches, focuses transverse and longitudinally, and accelerates charged particles in the low-energy range (up to ~ 3 MeV), thus becoming one of the main components of the accelerating structure. The first RFQ simulations, performed in Superfish and GPT software packages, will be presented in this work. |