A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Andreev, N.

Paper Title Page
MOPEB050 Superconducting Magnets for SCRF Cryomodules at Front End of Linear Accelerators 379
 
  • V.S. Kashikhin, N. Andreev, Y. Orlov, D.F. Orris, M.A. Tartaglia
    Fermilab, Batavia
 
 

Linear accelerators based on a superconducting technology need various superconducting magnets installed inside SCRF Cryomodules. At front end of Linear Accelerators installed relatively weak iron-dominated magnets. The focusing quadrupoles have integrated gradients in the range of 1 T - 4 T, and apertures 35 mm - 90 mm. At Fermilab were designed superconducting dipole correctors, and quadrupoles for various projects. In the paper presented these magnet designs, and test results of fabricated dipole corrector. There are also briefly discussed: magnetic and mechanical designs, quench protection, cooling, fabrication, and assembly inside cryomodule.

 
MOPEB051 Design of Helical Solenoid Combined with RF Cavity 382
 
  • V.S. Kashikhin, N. Andreev, V. Kashikhin, M.J. Lamm, A.V. Makarov, G.V. Romanov, K. Yonehara, M. Yu, A.V. Zlobin
    Fermilab, Batavia
 
 

Helical Solenoids (HS) were proposed for a muon beam ionization cooling. There are substantial up to 30 MeV/m energy losses during passing the muon beam through an absorber. The main issue of such system is the energy recovery. A conventional RF cavity has diameter which is too large to be placed inside HS. In the paper presented results of dielectric filled RF cavity design. The proposed cavity has helical configuration. Presented Helical Cooling Channel module design which includes: high pressure vessel, RF cavity, and superconducting HS. Discussed parameters of this module sub-systems and shown results of muon beam tracking in combined magnetic and electric 3D fields.