A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Alsari, S.M.H.

Paper Title Page
MOPEC075 Status of the RAL Front End Test Stand 642
 
  • A.P. Letchford, M.A. Clarke-Gayther, D.C. Faircloth, S.R. Lawrie, M. Perkins, P. Wise
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • S.M.H. Alsari, S. Jolly, D.A. Lee, P. Savage
    Imperial College of Science and Technology, Department of Physics, London
  • I. Ariz, R. Enparantza, P. Romano, A. Sedano
    Fundación TEKNIKER, Eibar (Gipuzkoa)
  • J.J. Back
    University of Warwick, Coventry
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao
  • M. Eguiraun
    ESS-Bilbao, Zamudio
  • V. Etxebarria
    University of the Basque Country, Faculty of Science and Technology, Bilbao
  • C. Gabor, D.C. Plostinar
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • N. Garmendia, H. Hassanzadegan
    ESS Bilbao, Bilbao
  • A. Kurup
    Fermilab, Batavia
  • J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
 
 

The Front End Test Stand (FETS) under construction at the Rutherford Appleton Laboratory is the UK's contribution to research into the next generation of High Power Proton Accelerators (HPPAs). HPPAs are an essential part of any future Spallation Neutron Source, Neutrino Factory, Muon Collider, Accelerator Driven Sub-critical System, Waste Transmuter etc. FETS will demonstrate a high quality, high intensity, chopped H-minus beam and is a collaboration between RAL, Imperial College and the Universtity of Warwick in the UK and the Universidad del Pais Vasco in Spain. This paper describes the current status and future plans of FETS.

 
MOPEC079 A Tuning System for the FETS RFQ 651
 
  • S.M.H. Alsari, J.K. Pozimski, P. Savage, O. Zorba
    Imperial College of Science and Technology, Department of Physics, London
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
 
 

The Front End Test Stand (FETS) is an experiment based at the Rutherford Appleton Laboratory (RAL) in the UK. The test stand is being constructed in collaboration between STFC, Imperial College London, ASTeC, the University of Warwick and the Universidad del Pais Vasco. This experiment will design, build and test the first stages necessary to produce a very high quality, chopped H- ion beam as required for the next generation of high power proton accelerators (HPPAs). HPPAs with beam powers in the megawatt range have many possible applications including drivers for spallation neutron sources, neutrino factories, accelerator driven sub-critical systems, waste transmuters and tritium production facilities. An automatic tuning system has been developed for the main 324MHz 4-vane RFQ accelerator and has been tested to fine tune the changes in the resonant frequency of a 324MHz 4-vane cold model RFQ, which been designed as part of the development of the test stand. This paper will present the electronics design of the automated tuning system along with the mechanical tuner structure. The design concepts will be discussed. Furthermore, results of the RF tuning would be presented.

 
MOPD056 The Mechanical Engineering Design of the FETS RFQ 810
 
  • P. Savage, S.M.H. Alsari, S. Jolly
    Imperial College of Science and Technology, Department of Physics, London
  • S.R. Lawrie, A.P. Letchford, P. Wise
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • J.K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
 
 

This paper will present the mechanical engineering design for a 324 MHz 4-vane RFQ, which has been developed for the Front End Test Stand (FETS) project based at the Rutherford Appleton Laboratory (RAL) in the UK. The design criteria will be discussed along with particular design features of the RFQ including the tuners, vacuum ports, main body cooling pocket design and the support / alignment structure. Different techniques for creating the RF and vacuum seal between major and minor vanes are also discussed.