A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Alonso, J.

Paper Title Page
MOPEC078 Commissioning of the Low Energy Beam Transport of the Front End Test Stand 648
 
  • J.J. Back
    University of Warwick, Coventry
  • J. Alonso
    Fundación Tekniker, Elbr (Guipuzkoa)
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao
  • R. Enparantza
    Fundación TEKNIKER, Eibar (Gipuzkoa)
  • D.C. Faircloth, A.P. Letchford
    STFC/RAL, Chilton, Didcot, Oxon
  • C. Gabor
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • S.R. Lawrie
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • J. Lucas
    Elytt Energy, Madrid
  • J.K. Pozimski, P. Savage
    Imperial College of Science and Technology, Department of Physics, London
 
 

The Front End Test Stand (FETS) at the Rutherford Appleton Laboratory is intended to demonstrate the early stages of acceleration (0-3 MeV) and beam chopping required for high power proton accelerators, including proton drivers for pulsed neutron spallation sources and neutrino factories. A Low Energy Beam Transport (LEBT), consisting of three solenoids and four drift sections, is used to transport the H- beam from the ion source to the FETS Radio Frequency Quadrupole. We present the status of the installation and commissioning of the LEBT, and compare particle dynamics simulations with preliminary measurements of the H- beam transport through the LEBT.

 
THPEC068 First Simulation Tests for the Bilbao Accelerator Ion Source Test Stand 4211
 
  • I. Bustinduy, D. Fernandez-Cañoto, D. de Cos
    ESS Bilbao, Bilbao
  • J. Alonso, M. Eguiraun, R. Enparantza, M. Larrañaga
    Fundación TEKNIKER, Eibar (Gipuzkoa)
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao
  • V. Etxebarria, J. Jugo, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao
  • D.C. Faircloth, S.R. Lawrie, A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • J. Feuchtwanger
    ESS-Bilbao, Zamudio
  • S. Jolly
    Imperial College of Science and Technology, Department of Physics, London
  • J. Lucas
    Elytt Energy, Madrid
 
 

The rationale behind the Bilbao Accelerator Ion Source Test Stand (ITUR) project is to perform a comparison between different kinds of hydrogen ion sources using the same beam diagnostics setup. In particular, a direct comparison will be made in terms of the emittance characteristics of Penning-type sources such as those currently being used in ISIS (UK) and those of microwave type such as CEA-Saclay and INFN. The aim here pursued is to build an Ion Source Test Stand where virtually any type of source can be tested and, thus, compared to the results of other sources under the same gauge. It would then be possible to establish a common ground for effectively comparing different ion sources. The work here presented reports on the first simulations for the H-/H+ extraction system, as well the devices that conform the diagnostic vessel: Faraday Cup, Pepperpot and Retarding Potential Analyzer (RPA), among others.