A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Agustsson, R.B.

Paper Title Page
MOPE093 A High Resolution Transverse Diagnostic based on Fiber Optics 1203
 
  • R.B. Agustsson, G. Andonian, A.Y. Murokh, R. Tikhoplav
    RadiaBeam, Santa Monica
  • D.L. Griscom
    NRL, Washington D.C.
 
 

A beam pro­file mon­i­tor uti­liz­ing the tech­no­log­i­cal ad­vances in fiber optic man­u­fac­tur­ing to ob­tain mi­cron level res­o­lu­tion is under de­vel­op­ment at Ra­di­a­Beam Tech­nolo­gies. This fiber-op­tic pro­fil­ing de­vice would pro­vide a lost cost, turn-key so­lu­tion with nom­i­nal op­er­a­tional su­per­vi­sion and re­quires min­i­mal beam­line real es­tate. We are cur­rent­ly study­ing and at­tempt­ing to mit­i­gate the tech­ni­cal chal­lenges faced by a fiber optic based di­ag­nos­tic sys­tem with a focus on ra­di­a­tion dam­age to the fibers and its ef­fect on sig­nal in­tegri­ty. Pre­lim­i­nary ir­ra­di­a­tion stud­ies and con­cep­tu­al op­er­a­tion of the sys­tem are pre­sent­ed.

 
MOPE094 X-band Travelling Wave Deflector for Ultra-fast Beams Diagnostics 1206
 
  • L. Faillace, R.B. Agustsson, P. Frigola, A.Y. Murokh
    RadiaBeam, Santa Monica
  • D. Alesini
    INFN/LNF, Frascati (Roma)
  • J.B. Rosenzweig
    UCLA, Los Angeles, California
  • V. Yakimenko
    BNL, Upton, Long Island, New York
 
 

The quest for de­tailed in­for­ma­tion con­cern­ing ul­tra-fast beam con­fig­u­ra­tions, phase spaces and high en­er­gy op­er­a­tion is a crit­i­cal task in the world of lin­ear col­lid­ers and X-ray FELs. Huge en­hance­ments in di­ag­nos­tic res­o­lu­tions are rep­re­sent­ed by RF de­flec­tors. In this sce­nario, Ra­di­a­beam Tech­nolo­gies has de­vel­oped an X-band Trav­el­ling wave De­flec­tor (XTD) in order to per­form lon­gi­tu­di­nal char­ac­ter­i­za­tion of the sub­pi­cosec­ond ul­tra-rel­a­tivis­tic elec­tron beams. The de­vice is op­ti­mized to ob­tain a sin­gle digit fem­tosec­ond res­o­lu­tion using 100 MeV elec­tron beam pa­ram­e­ters at the Ac­cel­er­a­tor Test Fa­cil­i­ty (ATF) at Brookhaven Na­tion­al Lab­o­ra­to­ry; how­ev­er, the de­sign can be eas­i­ly ex­tend­ed to be uti­lized for di­ag­nos­tics of GeV-class beams. The XTD de­sign fab­ri­ca­tion and tun­ing re­sults will be dis­cussed, as well as in­stal­la­tion and com­mis­sion­ing plans at ATF.


* J. England et al., "X-Band Dipole Mode Deflecting Cavity for the UCLA Neptune Beamline".
** D. Alesini, "RF deflector-based sub-ps beam diagnostics: application to FELs and advanced accelerators".

 
THPEA057 Development of a CW NCRF Photoinjector using Solid Freeform Fabrication (SFF) 3804
 
  • P. Frigola, R.B. Agustsson, L. Faillace
    RadiaBeam, Marina del Rey
  • W.A. Clemens, J. Henry, F. Marhauser, R.A. Rimmer, A.T. Wu, X. Zhao
    JLAB, Newport News, Virginia
  • O. Harrysson, T. Horn, K. Knowlson, T. Mahale, G. Prasanna
    NCSU, Raleigh, North Carolina
  • F. Medina, R.B. Wicker
    University of Texas El Paso, W.M. Keck Center for 3D Innovation, El Paso, Texas
  • L.E. Murr
    University of Texas at El Paso, El Paso, Texas
 
 

A key issue for high av­er­age power, nor­mal con­duct­ing radio fre­quen­cy (NCRF), pho­toin­jec­tors is ef­fi­cient struc­ture cool­ing. To that end, Ra­di­a­Beam has been de­vel­op­ing the use of Solid Freeform Fab­ri­ca­tion (SFF) for the pro­duc­tion of NCRF pho­toin­jec­tors. In this paper we de­scribe the pre­lim­i­nary de­sign of a high gra­di­ent, very high duty cycle, pho­toin­jec­tor com­bin­ing the cool­ing ef­fi­cien­cy only pos­si­ble through the use of SFF, and the RF ef­fi­cien­cy of a re-en­trant gun de­sign. Sim­u­la­tions of the RF and ther­mal-stress per­for­mance will be pre­sent­ed, as well as ma­te­ri­al test­ing of SFF com­po­nents.

 
THPEA059 Ultra-high Gradient Compact S-band Linac for Laboratory and Industrial Applications 3807
 
  • L. Faillace, R.B. Agustsson, P. Frigola, A.Y. Murokh
    RadiaBeam, Marina del Rey
  • V.A. Dolgashev
    SLAC, Menlo Park, California
  • J.B. Rosenzweig
    UCLA, Los Angeles, California
 
 

There is grow­ing de­mand from the in­dus­tri­al and re­search com­mu­ni­ties for high gra­di­ent, com­pact RF ac­cel­er­at­ing struc­tures. The com­mon­ly used S-band SLAC-type struc­ture has an op­er­at­ing gra­di­ent of only about 20 MV/m; while much high­er op­er­at­ing gra­di­ents (up to 70 MV/m) have been re­cent­ly achieved in X-band, as a con­se­quence of the sub­stan­tial ef­forts by the Next Lin­ear Col­lid­er (NLC) col­lab­o­ra­tion to push the per­for­mance en­ve­lope of RF struc­tures to­wards high­er ac­cel­er­at­ing gra­di­ents. Cur­rent­ly how­ev­er, high power X-band RF sources are not read­i­ly avail­able for in­dus­tri­al ap­pli­ca­tions. There­fore, Ra­di­a­Beam Tech­nolo­gies is de­vel­op­ing a short, stand­ing wave S-band struc­ture which uses fre­quen­cy scaled NLC de­sign con­cepts to achieve up to a 50 MV/m op­er­at­ing gra­di­ent at 2856 MHz. The de­sign and pro­to­type com­mis­sion­ing plans are pre­sent­ed.