Numerical Calculation of Beam Coupling Impedances in the Frequency Domain using the Finite Integration Technique

TECHNISCHE UNIVERSITÄT DARMSTADT

Uwe Niedermayer and Oliver Boine-Frankenheim

24 August 2012 | TU Darmstadt | Fachbereich 18 | Institut Theorie Elektromagnetischer Felder | Uwe Niedermayer | 2

Contents

- Motivation
- SIS100 impedance spectrum overview
- Definitions
- Full numerical simulation in FD
- Boundary Conditions
- Implementation
- Proposed inductive insert
- Kicker and its supply
- Bench measurements
- Current status and outlook

Motivation

- In SIS100, especially coasting beam and high intensity proton bunch are susceptible to impedance driven transverse instability
- The following components of SIS100 have been identified to cause large transverse impedance contribution:
 - Beampipe (especially thin, flat dipole sections)
 - Ferrite-Kicker and its supply network
 - Proposed *"Inductive Insert"* for long. Space-Charge compensation
 Collimators
- Real part of longitudinal impedance causes heating (some kickers are in cold sections of SIS100)
- Heating in LHC kickers (Limitation of running time)

The coupling impedance spectrum in SIS18 and SIS100

Time domain vs. Frequency domain

- Time domain calculations e.g. by commercial software CST Particle Studio (Wake Potential)
- Impedances obtained by FFT
- Limitation by uncertainty relation
- Long wake length for low frequency $\Delta z \ge \frac{\beta c}{\Delta f} \approx 100 \text{ m} @ 1 \text{ MHz}$
- Large Gaussian bunchlength → impossibly long computation
- High computational effort for low velocity (large extension of source fields)
- →FD approach pursued

for low and medium frequencies (below pipe cutoff)

Contents

- Motivation
- SIS100 impedance spectrum overview
- Definitions
- Full numerical simulation in FD
- Boundary Conditions
- Implementation
- Proposed inductive insert
- Kicker and its supply
- Bench measurements
- Current status and outlook

Definition of coupling impedances in FD

TECHNISCHE UNIVERSITÄT DARMSTADT

Displacement of the beam

Uniform cylindrical beam:

$$\sigma(\varrho,\varphi) \approx \frac{q}{\pi a^2} (\Theta(a^{\prime}-\varrho) + \delta(a-\varrho)d_x^{\prime}\cos\varphi)$$

Radius of the beam

$$\underline{J}_{s,z}(\varrho,\varphi,z,\omega) = \sigma e^{-i\omega z/v}$$
$$\underline{\varrho}_s(\varrho,\varphi,z,\omega) = \frac{1}{v}\sigma e^{-i\omega z/v}$$

Rigid beam

Finite integration length due to decay of scattered fields

$$\underline{Z}_{\parallel}(\omega) = -\frac{1}{q^2} \int_{beam} \underline{\vec{E}} \cdot \underline{\vec{J}}_{\parallel}^* \mathrm{d}V \qquad \qquad \underline{Z}_{\perp,x}(\omega) = -\frac{v}{(qd_x)^2\omega} \int_{beam} \underline{\vec{E}} \cdot \underline{\vec{J}}_{\perp}^* \mathrm{d}V$$

Details: See e.g. R. Gluckstern, CAS, 2000 or T. Weiland and R. Wanzenberg, CAS, 1992

Imaginary part dominated by SPACE CHARGE!

Dipolar

current

beam

Contents

- Motivation
- SIS100 impedance spectrum overview
- Definitions
- Full numerical simulation in FD
- Boundary Conditions
- Implementation
- Proposed inductive insert
- Kicker and its supply
- Bench measurements
- Current status and outlook

Full numerical simulation in FD

- Before starting, the constitutive work of B. Doliwa between 2004 and 2007 has to be acknowledged
- New development is mainly due to computational needs (fast linear algebra (PETSc) on modern 64-bit machines)
- From Maxwell's equations we have

$$\nabla \times \frac{1}{\mu} \nabla \times \underline{\vec{E}} + i\omega\kappa\underline{\vec{E}} - \omega^2\varepsilon\underline{\vec{E}} = -i\omega\underline{\vec{J}}_{ext}$$

• Charge implicitly included by continuity eq.

$$\underline{\mu} = \mu' - i\mu'' \qquad \underline{\varepsilon} = \varepsilon' - i\varepsilon''$$

Magnetization / Polarization Losses

- \rightarrow Linear and Lossy
- \rightarrow Hysteresis loop approximated by ellipse in H-B space
- \rightarrow Excitation of Higher Order Harmonics neglected

Full numerical simulation in FD

$$\nabla \times \frac{1}{\mu} \nabla \times \underline{\vec{E}} + i\omega\kappa\underline{\vec{E}} - \omega^2\varepsilon\underline{\vec{E}} = -i\omega\underline{\vec{J}}_{ext}$$

FIT is a mimetic discretization based on the INTEGRAL FORMULATION of Maxwell's equations (Weiland 1977)

$$\widetilde{\mathbf{C}}\mathbf{M}_{\mu^{-1}}\mathbf{C}\underline{\widehat{\mathbf{e}}} + i\omega\mathbf{M}_{\kappa}\underline{\widehat{\mathbf{e}}} - \omega^{2}\mathbf{M}_{\epsilon}\underline{\widehat{\mathbf{e}}} = -i\omega\underline{\widehat{\mathbf{j}}}_{ext}$$

Complex linear system of size 3n_p, indefinite ill-conditioned matrix

Symmetrization

$$\widetilde{\mathbf{C}}\mathbf{M}_{\mu^{-1}}\mathbf{C}\underline{\widehat{\mathbf{e}}} + i\omega\mathbf{M}_{\kappa}\underline{\widehat{\mathbf{e}}} - \omega^{2}\mathbf{M}_{\epsilon}\underline{\widehat{\mathbf{e}}} = -i\omega\underline{\widehat{\mathbf{j}}}_{ext}$$
$$\underline{\widehat{\mathbf{e}}} = \mathbf{M}_{\epsilon}^{-1/2}\underline{\widehat{\mathbf{e}}}' \qquad \widetilde{\mathbf{C}} = \mathbf{C}^{T}$$

$$(\mathbf{M}_{\epsilon}^{-1/2}\widetilde{\mathbf{C}}\mathbf{M}_{\mu^{-1}}\mathbf{C}\mathbf{M}_{\epsilon}^{-1/2} - i\omega\mathbf{M}_{\epsilon}^{-1/2}\mathbf{M}_{\kappa} - \omega^{2}I)\underline{\widehat{\mathbf{e}}}' = -i\omega\mathbf{M}_{\epsilon}^{-1/2}\underline{\widehat{\mathbf{j}}}_{ext}$$

$$\left(A^T A - \omega^2 D\right) \underline{\widehat{\mathbf{e}}}' = b$$

Contents

- Motivation
- SIS100 impedance spectrum overview
- Definitions
- Full numerical simulation in FD
- Boundary Conditions
- Implementation
- Proposed inductive insert
- Kicker and its supply
- Bench measurements
- Current status and outlook

Boundary Conditions (BC) 1

Phase corrected periodic BC

- Field can be splitted in source and scattered part ⁽¹⁾
- Only source part at ports below cut-off frequency
- Calculation of the total phase advance in the structure

Boundary Conditions (BC) 1

Phase corrected periodic BC

- Field can be splitted in source and scattered part ⁽¹⁾
- Only source part at ports below cut-off frequency
- Calculation of the total phase advance in the structure

Boundary Conditions 2

Infinite beam pipe BC ⁽¹⁾

- 2D solution with a priori known z-dependency
- Imprinted using the source equivalence theorem

$$\left(A^{T}A - \omega^{2}D\right)\underline{\widehat{\mathbf{e}}}' = b + i\omega\mathbf{M}_{\epsilon}^{-1/2}\underline{\widehat{\mathbf{j}}}_{e}^{\mathrm{eq}} - \mathbf{M}_{\epsilon}^{-1/2}\widetilde{\mathbf{C}}\mathbf{M}_{\mu^{-1}}\underline{\widehat{\mathbf{j}}}_{m}^{\mathrm{eq}}$$

$$\underline{\mathbf{\hat{j}}}_{e}^{\text{eq}} = \widetilde{\mathbf{C}}_{R} \underline{\mathbf{\hat{h}}}^{\text{SG}} \qquad \underline{\mathbf{\hat{j}}}_{m}^{\text{eq}} = \mathbf{C}_{R} \underline{\mathbf{\hat{e}}}^{\text{SG}}$$
Residual curl operators

Solved on a supplementary 2D grid with

$$\mathbf{P}_z = diag\left(e^{-i\frac{\omega\Delta z}{\beta c}}\right)$$

- Sometimes called 2.5D simulation since longitudinal dependence known a priori but nonzero
- Can also be used for longitudinally homogeneous impedance calculations
- Limit $v \to \infty$ gives "radial model" (purely 2D)

(1) M.C. Balk, Feldsimulation starrer Teilchenstrahlen beliebiger Geschwindigkeit und deren Anwendung in der Schwerionenbeschleunigerphysik, PhD at TU-Darmstadt, 2005.

Space charge impedance as test-case for boundary conditions

Contents

- Motivation
- SIS100 impedance spectrum overview
- Definitions
- Full numerical simulation in FD
- Boundary Conditions
- Implementation
- Proposed inductive insert
- Kicker and its supply
- Bench measurements
- Current status and outlook

Implementation

Contents

- Motivation
- SIS100 impedance spectrum overview
- Definitions
- Full numerical simulation in FD
- Boundary Conditions
- Implementation
- Proposed inductive insert
- Kicker and its supply
- Bench measurements
- Current status and outlook

Proposed SC compensation insert

Longitudinal Space Charge is like a negative inductance

$$\underline{Z}_{\parallel}^{SC} = -i\omega \frac{\mu_0 g_0 l}{4\pi\beta^2 \gamma^2}$$

Causes potential well distortion / decrease of bucket-height

Can be compensated by positive inductance

$$\underline{Z}_{\parallel}^{INSERT} \approx i\omega \frac{\mu}{2\pi} l \ln \frac{h}{b} , \quad f < 10 \text{ MHz} , \quad \beta > 0.3$$

- Implemented in PSR / Los Alamos using highly permeable material (Ferrite)
- Magnetization losses cause real part of impedance
 →Negative mass instability @ PSR (PhD Thesis C. Beltran, 2003)
- Impact on transverse impedance?

Analytical calculations for cylindrical SC compensation insert (2D)

First Results for Inductive Test Structure

$$\mu'_r = 1000, \quad \mu''_r = 0$$

Impedance purely inductive

Electric field

		V/
		61
		be a second s
		State of the second
		52
	n nakanakan mananan makanan karakanan karakan mananan mananan mananan manan sana sana	46
		32
		28
		24
	***************************************	24
	n a sea na sea na seu composición de la composición de la sea de la composición de la composición de la composi	17
and the second	n na manana na sa ka	13
	• • • • • • • • • • • • • • • • • • •	91.
	n a na a na a na a na a na a na anna anna anna a na anna a na a a <mark>a a na a</mark> na anna an	52.
		13.
a second a s		
and the second		
and the second	· * * * * * * * * * * * * * * * * * * *	
and the second	, , , , , , , , , , , , , , , , , , ,	
a second a s		
	· · · · · · · · · · · · · · · · · · ·	
and the second	1	

f=100MHz

Phase corrected periodic boundary

Done and To Do

- Preprocessing in MATLAB, treating of PEC cells
- Construction of CURL-Matrix and Electrical Boundary conditions
- Construction of System Matrix
- Preconditioner and solver for up to 10⁶ DOFs^V
- 2D solver for boundary conditions
- Integration of the beam adapted boundary in the main grid
- Curl matrix with periodic boundary conditions
- Reassembling of Hodge operators with frequency dependent material parameters and lumped elements
- Solver optimization for larger systems

Contents

- SIS100 impedance spectrum overview
- Definitions
- Full numerical simulation in FD
- Boundary Conditions
- Implementation
- Proposed inductive insert
- Kicker and its supply
- Bench measurements
- Current status and outlook

r: s: i

High Frequency Measurement setup

Setup @ CERN (MKE-Kicker)

SIS18/SIS100 kicker with supply bar (High voltage connection)

Conclusions (current status and outlook)

THE END

Thank you for your kind attentionAny questions?

TECHNISCHE UNIVERSITÄT DARMSTADT

The FIT Grid

LF Transverse impedance

LCR Meter

$20~\mathrm{Hz}{<}~f < 2~\mathrm{MHz}$

$$\underline{Z}_{\perp} = \frac{c(\underline{Z}^{DUT} - \underline{Z}^{REF})}{\omega N^2 \Delta^2}$$

Drawback: Upper frequency limit due to coil resonance @ approx. 1MHz

Sensitivity on material parameters

- Calculation of extremal cases
- Estimation of higher harmonics (nonlinear response)

TECHNISCHE

UNIVERSITÄT DARMSTADT