BEAMS Peter Schmidt^{1,2}, Oliver Boine-Frankenheim^{1,2}, Vladimir Kornilov¹, Peter Spädtke¹

> [1] GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, [2] Technische Universität Darmstadt, Fachbereich Physik

SPACE CHARGE EFFECTS AND FOCUSING METHODS FOR LASER ACCELERATED ION BEAMS

Contents

Introduction:

- •The LIGHT-Project
- •Simulation setup, major tasks and objectives

Part 1: Space charge and beam/bunch model

- •Space charge criteria and beam model
- •Deneutralization with thin metal foil
- •Sample calculation

Part 2: Focusing methods

- •Focusing with pulsed solenoid
- •Combination of space charge criteria and focusing
- Inductive coupling and ohmic losses

Conclusions

Outlook

LIGHT - Laser Ion Generation, Handling and Transport

(see e.g. A. Almomani et al: LIGHT Project Report)

Experimental sequence:

•GSI PHELIX Laser hits a thin metal foil target
•Proton plasma is accelerated by TNSA mechanism (e.g.)
•Proton beam is focused and carried to re-buncher cavity

Fig from: A. Almomani, S. Busold et. al. : LIGHT Project report

Z6 target chamber

From TNSA mechanism we know:

High intense proton beam
Beam shows high energy spread
After acceleration beam can be treated as quasi neutral: Protons and co-moving electrons
Beam shows high initial divergence

Z6 target chamber

Considered area:

Beam properties and models after acceleration
Beam focusing and collimation methods
Optical and technical properties of the focusing elements

Z6 target chamber

Scetch of simulation setup

TECHNISCHE UNIVERSITÄT DARMSTADT

22.08.2012 | Fachbereich Physik | TU Darmstadt | Peter Schmidt | 4

Major Objectives, Tasks and Tools

Region 1:

- Neutral beam of protons and co-moving electrons drifts into space
- A thin metal foil removes all electrons of the beam

Tasks: Where to place the foil, so that after the foil space charge can be neglected?

Tools: VORPAL 5.2[©]

TECHNISCHE UNIVERSITÄT DARMSTADT

22.08.2012 | Fachbereich Physik | TU Darmstadt | Peter Schmidt | 4

Major Objectives, Tasks and Tools

Region 1:

- Neutral beam of protons and co-moving electrons drifts into space
- A thin metal foil removes all electrons of the beam

Tasks: Where to place the foil, so that after the foil space charge can be neglected?

Tools: VORPAL 5.2[©]

Region 2:

- Pure proton beam focused by a pulsed power solenoid
- Space charge negligible

Tasks:

- Verifiy the Space charge criterion
- Get optical and technical properties of the solenoid

Tools: VORPAL 5.2[©], CST Studio[©]

UNIVERSITÄT

TECHNISCHE UNIVERSITÄT DARMSTADT

Simple bunched beam model:

Homogeneous cylindrical bunch
Has Inital divergence
Longitudinal energy spread
Consists of protons and co-moving electrons

Space charge and beam model

TECHNISCHE UNIVERSITÄT DARMSTADT

Simple bunched beam model:

Homogeneous cylindrical bunch
Has Inital divergence
Longitudinal energy spread
Consists of protons and co-moving electrons

Reference Parameters:

No	1-10 ¹¹
r _o	0,1 mm
I _o	1 mm
E _{kin}	10 MeV
ΔE _{kin}	±1 MeV

Space charge and beam model

Simple bunched beam model:

 Homogeneous cylindrical bunch •Has Inital divergence Longitudinal energy spread Consists of protons and co-moving electrons

Longitudinal expansion only due to

Edge effects neglected ↔ infinite long

Approximations:

velocity spread:

beam

Bunch model: 9 MeV 10 MeV 11 MeV 0,2 mm 1 mm

1.10¹¹

Reference Parameters:

No

r _o	0,1 mm
I _o	1 mm
E _{kin}	10 MeV
ΔE _{kin}	±1 MeV

TECHNISCHE UNIVERSIT DARMSTADT

Transversal envelope equation $\mathbf{G} = \mathbf{G}$

One finds the **transversal envelope equation** for the expansion of the beam radius r:

 $\frac{d^2\sigma}{dz^2} = \frac{K(z)}{\sigma}, \quad \sigma = \frac{r}{r_0}$

One finds the **transversal envelope equation** for the expansion of the beam radius r:

With the **perveance**:

With: Z charge number of the ions (e.g. Z=1 for protons), ρ particle density, m_p particle mass, r_0 initial radius, e elemental charge, c lightspeed, γ Lorentzian factor and κ the ratio of protons and electrons (neutralization factor)

$$\frac{d^2\sigma}{dz^2} = \frac{K(z)}{\sigma}, \quad \sigma = \frac{r}{r_0}$$

$$K(z) = \frac{Z^2 \rho(z)(1-\kappa)}{\beta_{\parallel}^2 c^2 \gamma^3 m_p} \frac{e^2}{2\varepsilon_0}, \quad \kappa = \frac{N_e}{N_p}$$

Transversal envelope equation

One finds the **transversal envelope equation** for the expansion of the beam radius r:

With the **perveance**:

With: Z charge number of the ions (e.g. Z=1 for protons), ρ particle density, m_p particle mass, r₀ initial radius, e elemental charge, c lightspeed, γ Lorentzian factor and κ the ratio of protons and electrons (neutralization factor)

Perveance is a measure for space charge effects and depends on beam parameters! It is the leading quantity in rating the importance of space charge !

$$K(z) = \frac{Z^2 \rho(z)(1-\kappa)}{\beta_{\parallel}^2 c^2 \gamma^3 m_p} \frac{e^2}{2\varepsilon_0}, \quad \kappa = \frac{N_e}{N_p}$$

$$\frac{d^2\sigma}{dz^2} = \frac{K(z)}{\sigma}, \quad \sigma = \frac{r}{r_0}$$

on G

Verification by VORPAL[©] simulation

Worst case: Bunch only consists of protons, $\vartheta_0 = 0^\circ$. $K_0 = 1,32 \cdot 10^6 \text{ m}^{-2}$

Verification by VORPAL[©] simulation

Worst case: Bunch only consists of protons, $\vartheta_0 = 0^\circ$. $K_0 = 1,32 \cdot 10^6 \text{ m}^{-2}$

Transversal expansion:

Analytical calculation from envelope equation (black line) and VORPAL[©] simulation (stroboscopic pictures)

Verification by VORPAL[©] simulation

Worst case: Bunch only consists of protons, $\vartheta_0 = 0^\circ$. $K_0 = 1,32 \cdot 10^6 \text{ m}^{-2}$

Transversal expansion:

Analytical calculation from envelope equation (black line) and VORPAL[©] simulation (stroboscopic pictures)

Bunch divergence angle:

Comparison of analytical calculation from envelope equation (black line) and VORPAL[©] simulation (dots).

Verification by VORPAL[©] simulation

Worst case: Bunch only consists of protons, $\vartheta_0 = 0^\circ$. $K_0 = 1.32 \cdot 10^6 \text{ m}^{-2}$

Transversal expansion:

Analytical calculation from envelope equation (black line) and VORPAL[©] simulation (stroboscopic pictures)

Bunch divergence angle:

Comparison of analytical calculation from envelope equation (black line) and VORPAL[©] simulation (dots).

calculations are upper limit!

Deneutralization with a foil

Deneutralization with thin metal foil:

- •Bunch is initially quasi neutral and drifts into space
- •At some position z_{foil} place a thin foil to absorb electrons
- •Determine z_{foil} such that space charge can be neglected behind foil
- •Place focusing elements behind the foil

Sample calculation

Initial conditions:

• Bunch is neutral with $\vartheta_0 = 0^\circ$ and $K_0 = 1,32 \cdot 10^6 \text{ m}^{-2}$

Sample calculation

TECHNISCHE UNIVERSITÄT DARMSTADT

Initial conditions:

- Bunch is neutral with $\vartheta_0 = 0^\circ$ and $K_0 = 1,32 \cdot 10^6 \text{ m}^{-2}$
- Tolerable max. angle after deneutralization: $\vartheta_{max} \le 1^{\circ} \rightarrow K \le 15.000 \text{m}^{-2}$ after foil!

Sample calculation

TECHNISCHE UNIVERSITÄT DARMSTADT

Focusing with pulsed power solenoid

TECHNISCHE UNIVERSITÄT DARMSTADT

Pulsed power solenoid:

Model designed in CST EM Studio[®]
CST[®] tracking simulation (space charge free
VORPAL[®] simulation (with space charge)
Comparison of both validates space charge criterion

22.08.2012 | Fachbereich Physik | TU Darmstadt | Peter Schmidt | 10

Focusing with pulsed power solenoid

Pulsed power solenoid:

Model designed in CST EM Studio[©]
CST[©] tracking simulation (space charge free
VORPAL[©] simulation (with space charge)
Comparison of both validates space charge criterion

CST[©] model of the solenoid. Some parts are hidden for better overview

TECHNISCHE UNIVERSITÄT DARMSTADT

Focusing with pulsed power solenoid

Pulsed power solenoid:

Model designed in CST EM Studio[©]
CST[©] tracking simulation (space charge free
VORPAL[©] simulation (with space charge)
Comparison of both validates space charge criterion

TECHNISCHE UNIVERSITÄT DARMSTADT

CST[©] model of the solenoid. Some parts are hidden for better overview

22.08.2012 | Fachbereich Physik | TU Darmstadt | Peter Schmidt | 10

z(mm)

0

50

100

150

200

Focusing with pulsed power solenoid

Pulsed power solenoid:

20

10

0

-10

-20

-150 - 100 - 50

x (mm)

Model designed in CST EM Studio
CST[©] tracking simulation (space charge free
VORPAL[©] simulation (with space charge)
Comparison of both validates space charge criterion

CST[©] model of the solenoid. Some parts are hidden for better overview

Results are in good agreement \rightarrow Space charge criterion yields good results!

TECHNISCHE UNIVERSITÄT DARMSTADT

Supply wires field

TECHNISCHE UNIVERSITÄT DARMSTADT

Supply wires:

•Former solenoid power supply by two wires parallel to the beam pipe

Dipol field of the wires leed to deflection of the beam
 Results simulated with CST Particle Studio[©]

CST[©] model of the solenoid. Some parts are hidden for better overview

Supply wires field

TECHNISCHE UNIVERSITÄT DARMSTADT

Supply wires:

•Former solenoid power supply by two wires parallel to the beam pipe

Dipol field of the wires leed to deflection of the beam
 Results simulated with CST Particle Studio[©]

CST[©] model of the solenoid. Some parts are hidden for better overview

Supply wires field

TECHNISCHE UNIVERSITÄT DARMSTADT

Supply wires:

•Former solenoid power supply by two wires parallel to the beam pipe

Dipol field of the wires leed to deflection of the beam
 Results simulated with CST Particle Studio[©]

CST[©] model of the solenoid. Some parts are hidden for better overview

Based on this simulation, the experimental setup was improved!

TECHNISCHE UNIVERSITÄT DARMSTADT

Ohmic losses and coupling:

Solenoid operated in pulsed mode
Shows inductive coupling to surrounding metal parts → time shift between current –and field maximum

Ohmic losses and coupling:

Solenoid operated in pulsed mode
Shows inductive coupling to surrounding metal parts → time shift between current –and field maximum

Induced eddy currents leed to power losses

 \rightarrow use CST EM Studio[©] to calculate both!

Ohmic losses and coupling:

Solenoid operated in pulsed mode
Shows inductive coupling to surrounding metal parts → time shift between current –and field maximum

Induced eddy currents leed to power losses

 \rightarrow use CST EM Studio[©] to calculate both!

TECHNISCHE UNIVERSITÄT DARMSTADT

Ohmic losses and coupling:

Solenoid operated in pulsed mode
Shows inductive coupling to surrounding metal parts → time shift between current –and field maximum

•Induced eddy currents leed to power losses

 \rightarrow use CST EM Studio[©] to calculate both!

TECHNISCHE UNIVERSITÄT DARMSTADT

Conclusions and Outlook

Conclusion:

- Simple bunch model could be varified by VORPAL[©] simulations
- Comparison of VORPAL[©] and CST[©] simulations show the validity of the worked out space charge criteria
- Noise fields and coupling effects of the solenoid could be worked out by simulation with CST EM Studio[®]

Conclusions and Outlook

Conclusion:

- Simple bunch model could be varified by VORPAL[®] simulations
- Comparison of VORPAL[©] and CST[©] simulations show the validity of the worked out space charge criteria
- Noise fields and coupling effects of the solenoid could be worked out by simulation with CST EM Studio[©]

Outlook:

- Compare different focusing methods, e.g. solenoid and quadrupol tribletts
- Work out a quality criterion for focusing methods
- Answer question: For given task, which method is best?

The End

Thanks for your attention!

22.08.2012 | Fachbereich Physik | TU Darmstadt | Peter Schmidt | 14