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Outline

o FFAGS

e COSY INFINITY, and what it does

e Computations and treatments of fields in COSY
e FFAG Field Modelling with COSY

e Some FFAG simulation results using COSY

— Field computations, out-of-plane field expansions

— High-order tracking’s with optimal symplectification
— Consistency checks

— More examples



Fixed-Field Alternating Gradient Accelerators

e Concept

— Fixed (time independent) magnetic fields
— Alternating field gradient — use of the strong focusing idea

e Key advantages

— Compact
— Continuous wave operation
— Large acceptance

e Various new classes of accelerators

— Proton drivers for muon colliders and neutrino factories
— Accelerator driven subcritical reactors
— Medical applications

e Challenges for conventional simulation codes

— Due to the complicated field arrangements, beam dynamics simulations
are difficult if not impossible.



Transtfer Map Method and Differential Algebras

e The transfer map M is the flow of the system ODE.
Zp = M(%,9),
where 7; and Z; are the initial and the final condition, § is system para-
meters.

e For a repetitive system, only one cell transfer map has to be computed.
Thus, it is much faster than ray tracing codes (i.e. tracing each individual
particle through the system).

e The Differential Algebraic method allows a very efficient computation of
high order Taylor transfer maps.

e The Normal Form method can be used for analysis of nonlinear behavior.
Differential Algebras (DA)

e it works to arbitrary order, and can keep system parameters in maps.

e very transparent algorithms; effort independent of computation order.

The code COSY Infinity has many tools and algorithms necessary.
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COSY INFINITY

e Arbitrary order

e Maps depending on parameters (even with mass dependence)

e No approximations in motion or field description

e Large library of elements

e Arbitrary Elements (you specify fields)

e Very flexible input language

e Powerful interactive graphics

e Frrors: position, tilt, rotation

e Tracking through maps (with/without symplectification. EXPO)
e Normal Form Methods

e Spin dynamics

e Fast fringe field models using SYSCA approach

e Reference manual (70 pages) and Programming manual (100 pages)

e Currently about 2000 registered users



Field Description in Differential Algebra

There are various DA algorithms to treat the fields of beam optics efficiently.
For example, DA PDE Solver

e requires to supply only

— the midplane field for a midplane symmetric element.

— the on-axis potential for straight elements like solenoids, quadrupoles,
and higher multipoles.

e treats arbitrary fields straightforwardly.

— Magnet (or, Electrostatic) fringe fields:
The Enge function fall-off model
1

F(s) =
( ) 1+exp(a1+a2-(S/D)+...+a6-(S/D)5)
where D is the full aperture.
Or, any arbitrary model including the measured data representation.

— Solenoid fields including the fringe fields.
— Measured fields: E.g. Use Gaussian wevelet representation.
— Etc. etc.



DA Fixed Point PDE Solvers

The DA fixed point theorem allows to solve PDEs iteratively in
finitely many steps by rephrasing them in terms of a fixed point problem.
Consider the rather general PDE

0 0 0 0 0 0
Cl,l% (CLQ%V) + bla_y (bga—y‘/) -+ 61& (CQ@V) — O,

where a;, b;, ¢; are functions of z, y, 2
The PDE is re-written in fixed point form as

e [ 505,
LR (o () 2 ()

Assume the derivatives of V' and 0V /0y with respect to x and z are known
in the plane y = 0. Then the right hand side is contracting with respect
to y (which is necessary for the DA fixed point theorem), and the various
orders in y can be iteratively calculated by mere iteration.




Enge Function for the Fringe Field Fall-off

F(s)

1

" 1+explai+as- (/D) + ... +ag - (s/D))
D : the tull aperture

Enge Coefficients of Various Quadrupoles

aq a9 as ay as ag
SLAC-PEP 0.296471 | 4.533219 | —2.270982 | 1.068627 | —0.036391 | 0.022261
S800 | Entr. 0.0965371 | 6.63297 —2.718 10.9447 1.64033 0.00
QII Exit 0.235452 | 6.60424 | —3.42864 | 4.38392 | —0.573524 0.00
LHC-HGQ lead | —0.939436 | 3.824163 | 3.882214 | 1.776737 | 0.296383 | 0.013670
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Dipole Enge Function (COSY default)

Enge Function, Dipole, Entrance

a1
o
-3.5 -3 inside o outside 5 5.5 x 2d
Enge Function Derivative 1, Dipole, Entrance Enge Function Derivative 2, Dipole, Entrance
0.000E+00 0.664
o
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Quadrupole Enge Function (only ay, as)

Enge Function, Quadrupole, Entrance: only al,a2

a1
o
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Enge Function Derivative 1, Quadrupole, Entrance: only al,a2 Enge Function Derivative 2, Quadrupole, Entrance: only al,a2
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o
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FFAG Field Modelling with COSY

e Sequences of COSY bending magnets

e Generalized FFAG magnets

e Radius-dependent Fourier decomposition

e Gaussian wavelet representation of polar midplane data
e Field representations from 3D data

e Other arrangements



Sequences of COSY Bending Magnets

e Use standard COSY beamline elements
Various types of combined function bending magnets

— Tilted and curved entrance edges
— Various types of fringe fields or measured fields
— Care:

« the fields of individual elements do not overlap strongly
x the field profiles are not too unusual

e The description is relative to

— A reference orbit and its deflection properties
x Studying many reference energies becomes tricky



Generalized Nonscaling FFAG Magnets

e Field description is in lab coordinates, applying to all reference orbits

e Superimposed combined-function magnets comprising the FFAG

— Tilted and curved entrance edges

— Various types of fringe fields

— Overlapping fields

e 2n sector-shaped cells, pairing one cell and its mirror image

— Due to the symmetry, closed orbits cross sector lines perpendicularly

e A magnet in each cell assumes a radial field profile B, ; = By; - Pp(r)

P12

P21

@

P12
P21

P22
@ P31

®



Radius-Dependent Fourier Decomposition

e Field description is in lab coordinates, applying to all reference orbits

e Describe midplane fields in terms of azimuthal Fourier modes

= ag + Za] cos (J(p — @o(r))) + Zb sin (j(¢ — ¢o(r)))

— Lower values of n represent common focusmg effects
— Suitable for scaling FFAGs

e When more radial detail is desired, i.e. having a,;; on a Ar grid

— Have the best fit polynomial P; to all a,;, and let a;; = a;;/P;(iAr)
— Perform a Gaussian wavelet interpolation

aj(r) = By(r) Zﬁp (—(r - T>2)




Gaussian wavelet representation of polar midplane data

e Field description is in lab coordinates, applying to all reference orbits

e Have a set of midplane field data By’j ) on a regular Ar, A¢ grid.

— Describe the midplane field by a Gaussian wavelet representation

ZGN ) - Gagld — ¢;) - B

where G, () = exp (—x2/a ) Jo/T
e Some limitations:
— The out-of-plane is sensitive to errors in the midplane.field data Béi’j )
— First establish the quality of the resulting expansion due to such errors
— A Fourier representation of the midplane data decreases such trouble

— Or, use field representations from 3D data



Field Representations from 3D Data

e Field description is in lab coordinates, applying to all reference orbits

e Mathematically, the midplane magnetic fields are sufficient to determine
the fields at any point in space based on a power series expansion

e In practice, any such attempt is sensitive to measurement errors
— Utilize field descriptions that do not rely on the midplane data
— Rather, utilize surtace field data

* Smoothing out any measurement errors
x More faithful 3D representations



Other Arrangements

e Describe fields of air coil-dominated magnets
from the geometry of pieces of the respective coils and the currents

e Perform injection-to-extraction simulations including acceleration elements



Field Computations, Out-of-Plane Field Expansions

e Example using a nonscaling FFAG model

NSFFAG 9 2 full system

A2

ZN




Midplane Field Distribution - Hard Edge Model




Midplane Field Distribution - COSY default DI Fringe Field Model




Midplane Field Distribution - Permanet Magnet Fringe Field Model
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By Field Distribution in Midplane
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By Field Distribution at y 5.0mm
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Horizontal Field Distribution in the y 5.0mm Plane
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Relative Error of By
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A Flow of Analysis of FFAGs and COSY Tools

e Closed Orbits. Determine closed orbits 7 .(s) for a set of reference
particle energies by optimization.

e Arbitrary Order Maps. For each 7 (s), calculate a high-order energy-

dependent transfer map M(Z;, ) around it, including high-order effects,
such as out-of-plane field expansions and nonlinearities in the Hamiltonian.

e Linear Properties of Maps. Determine common linear beam functions
including invariant ellipses and tunes near 7 (s).

—

e Tracking. Using M(Z;,d), perform tracking to estimate the dynamic
aperture, presence of resonances, etc. There are various methods in COSY
preserving the symplecticity, like EXPO with minimal modifications.

e Acceleration. Describe the fields including cavities. Study the entire
energy range in steps to see the acceleration effects.

e Amplitude Dependent Tunes and Resonances. Use COSY tools
for nonlinear effects, including the normal form-based computations.

e Global Parameter Optimization. Use COSY optimization tools for
system parameters, including global optimizations working over a pre-
specified search region, differing from conventional local optimizations.



Tracking Study with/without Symplectification

e Example using a scaling FFAG model

— 3rd order computations without symplectification

— 11th order computations without symplectification
— 11th order computations with EXPO



0.100 ‘ - 3rd Order 0.300E-01

0.300E-01 0.800E-02

.1MeV: 3rd. 60deg sym. x at each 1mm. x(30mm)-a(100mrad) 1.1MeV 3rd. 60deg sym. y at each 0.5mm. y(8mm)-b(30mrad)
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0.100 0.300E-01

'11th  order

0.300E-01 0.800E-02

1.1MeV 1ith. 60deg sym. x at each 1mm. x(30mm)ta(100mrad) 1.1MeV 1ith. 60deg sym. y at each 0.5mm. y(8mm)-b(30mrad)
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0.300E-01
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0.800E-02

11th order
with  EXPO symplectification

1.1MeV Symplectic 11th. 60deg sym. x at each 1mm. x(30mm)-a(100mrad) 1.1MeV Symplectic 11th. 60deg sym. y at each 0.5mm. y(8mm)-b(30mrad)
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Consistency Check

e Example using a cyclotron model

— Using the method of generalized superimposed FFAG magnets (FACT)

— Model exactly the same system using a COSY standard DIpole magnet
(COSY-DI)

— The same fringe field fall-off Enge model is applied

— Compare high-order tracking pictures
Also compare COSY-DI without any fringe field



cyclotron 2 3 full system
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magnet layout
orbit =======

/

I

i

N

|

filiay

T HFE
A1 2
[ TT7777 e, A L o o ey e, e ey 5
A o A A gy L iy AV iy LV g NV A g 9 a2 g L LA AL Ay
’ii’lllnﬁﬁ%?i#?%?ﬁﬁwﬁiﬁw
T G iy o 3 g ¥ g A A A e A e £y Y A A W g o S
B e e e e e e et e o N
O e e o o e e N>
B S e 0 e e e W o Y
L0 3 A % e S A i ¥ ¥ L A9 Y A g ¥ e AV e o
B B e A e e e o A e ST O e e
L0 o A3 ¥ A S A o ¥ 2 o ¥ S 9 A0 A % Y 3 Low AP L o ¥ oy
i e A e e e e L o e e e e o,
ZF A 0 oA Y Y L A ¥ gy SN Y e A o ¥ g
— /] e e e e e e
L7 e e e S e e S\ A e A v .
AL AT AT TS Q)
’ ’ ’ B N LR %
[ R R TR
e e e e e e e
— e s e\
4 , | T R

ll

|

\\
L7

I ,nn..'::::::::..:.-:::}z\\\\\\\
[ 7

U

l
",’

I

I

i
i

i

l

|

i
!

[117
,” LTSN
i

4

i
fi

S Yy

o ey

0 3 -... £
- Z7

x(m) in FACT coor. 0O

z(m)



midplane field By: FACT

magnet layout
orbit =======
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Superimposed FFAG magnets (FACT)
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Modelling  exactly the same system by COSY's standard Dlpole magnet
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Modelling exactly the same system by COSY's standard Dipole magnet - NO fringe fields
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Outlook

e Consistency checks in inhomogeneous bending magnets



Outlook

e Consistency checks in inhomogeneous bending magnets

— How can it be done using conventional simulation codes?
Example: A nonscaling FFAG design for Project X
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Outlook

e Consistency checks in inhomogeneous bending magnets

— How can it be done using conventional simulation codes?
Example: A nonscaling FFAG design for Project X

— How can it be done using codes for field maps?
Example: A nonscaling 6 cell FFAG design

Closed Orbits for One Cell (60 deg) and the Magnets Layout - p6cells1GeV
9 T T T T

'490MeV |
500MeV
510MeV -+

x(m)




Midplane Field Distribution and Closed Orbits for One Cell (60 deg) - p6cells1lGeV

490MeV —
500MeV —
510MeV —

A fine grid (d_R=1cm, d_theta=0.5deq) is used for the field data.
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Midplane Field Data and Closed Orbits in a Magnified Range - p6cells1GeV
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500MeV
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The marked rectangular area of the previous page is shown, magnified.



Outlook

e Consistency checks in inhomogeneous bending magnets

— How can it be done using conventional simulation codes?
Example: A nonscaling FFAG design for Project X
—> extremely difficult if not impossible....

— How can it be done using conventional codes for field maps?
Example: A nonscaling 6 cell FFAG design
—> extremely difficult if not impossible....



Outlook

e Consistency checks in inhomogeneous bending magnets
—> extremely difficult if not impossible....

e Applying automated domain decomposition schemes

— A selection of a set of reference particle energies can be systematically
automated depending on the strength of nonlinearities in the fields.

Utilizing the method of Taylor models (Remainder enhanced Differential
Algebras) in COSY
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Outlook

e Consistency checks in inhomogeneous bending magnets
—> extremely difficult if not impossible....

e Applying automated domain decomposition schemes

— A selection of a set of reference particle energies can be systematically
automated depending on the strength of nonlinearities in the fields.

Utilizing the method of Taylor models (Remainder enhanced Differential
Algebras) in COSY

e Inclusion of space charge effects

— FMM (Fast Multipole Method) and MLFMA (Multiple Level Fast Mul-
tipole Algorithm) are implemented in Differential Algebras in COSY.

By He Zhang and Martin Berz





