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Experimental Observations

Multipacting observed in RF/microwave components in the
aerospace community.
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Experimental Observations

Dark current observed in a RF cavity and a Be window in the
Linac community.
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Experimental Observations

Multipacting is also a very disturbing phenomenon appearing in
high-Q RF cavities in the cyclotron community.
Electrons are pulled out-off the walls of resonators by the RF field.
If these electrons then hitting other metallic surfaces, more new
secondary electrons are produced.
This kind of electron multiplication will limit the power level until
the surfaces will be cleaned through a conditioning process.
Conditioning can be a very time-consuming process.
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Classic Multipacting Theory I

Simple geometries (parallel plate, rectangular waveguide or
coaxial line)

Deterministic: the emission energy is a constant fraction of the
impact energy

Multipacting is contributed only by the electrons whose transit
times through the gap are equal to an odd number of half-periods
of the high-frequency field
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Classic Multipacting Theory II
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Example resonant zone in phase space
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Classic Multipacting Theory III
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OPAL−simualtion
Classical theory
Hibrid mode theory

Fail to predict multipacting zone due to missing the single side
impact which also plays an important role in multiplication
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Non-stationary Multipacting Theory I
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Random nature of emission
energy( velocity): random
impact phase, energy . . .
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Non-stationary Multipacting Theory(2)

Integrating equation (1) w.r.t variable t , and using initial conditions
dz
dt
|t=t0 = v0, z|t=t0 = 0, normalized variables: vω = eV0/mωd ,

λ = ωd/vω, u = v0/vω, ωt0 = ϕ0, ωt = ϕ

z = −d
λ

sinωt +
d
λ

(u + cosϕ0)ωt

+
d
λ

sinϕ0 −
d
λ

(u + cosϕ0)ϕ0. (2)

if we define ξ = ωz/vω and τ = ϕ− ϕ0 in consequence (2) can be
rewritten by using this new variable as:

ξ(ϕ,ϕ0,u) = (u + cosϕ0)τ + sinϕ0 − sin(ϕ0 + τ). (3)
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Non-stationary Multipacting Theory(3)
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Now double-side(ds)
and single-side(ss)
impacting exist:
ξ(ϕ,ϕ0,u) = λ and
ξ(ϕ,ϕ0,u) = 0 in
equation (3)
More (most!) complete
description of
multipacting in PP
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Non-stationary Multipacting Theory(4)

The initial velocity u of emitted particles is a random variable, the
solution of equation (3) w.r.t time τ that particles hit the plates is
also a random variable.
As long as we know the probability density function (PDF) of the
initial velocity u, which usually is a thermal distribution, then the
PDF of time τ can be derived according to the rule of change of
variable in probability theory.
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Non-stationary Multipacting Theory(5)

The electron emission rates and impact rates in each plate can be
described by the PDF of τ , at which particles hitting the plates,
and the secondary emission yield coefficient w.r.t τ and u.
The particle number can be obtained by integrating the emission
rates and impact rates w.r.t time (details are in the appendix of this
talk and also in S. Anza’s paper).
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Code Review

F.L.Krawczyk’s review paper in the 10th Workshop on RF
Superconductivity, 2001, Tsukuba, Japan.
CST, Vorpal and Track3p.
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Motivation

Dark current problem in SwissFEL project at PSI
Mutipactor prediction for the RF cavities of the CYCIAE-100
cyclotron at CIAE
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Goal

Extend the 3D parallel particle tracking code OPAL with complex
geometry handling capabilities
Add dark current and multipacting simulation capabilities in OPAL
to handle complex RF structures with arbitrary geometries
Post processing and visualization
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3D Geometry Handling Capability for OPAL

Read in surface mesh generated by GMSH (step-file) in H5hut
format
Triangle-line segment intersection test and boundary box strategy
based collision test
Handle arbitrary structure as long as it is closed, or more generally
speaking: arbitrary structure with pre-defined inward normals
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3D Geometry model in OPAL I

Geometry represented by triangulated surface
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3D Geometry model in OPAL II
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3D Geometry model in OPAL III

~n

~n

Boundary bounding box to speedup the collision tests
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Field Emission Model

Fowler-Nordheim formula introduced by R. H. Fowler, L.
Nordheim: J(r, t) = A(βE)2

ϕt(y)2 exp (−Bv(y)ϕ3/2

βE )

Child-Langmuir law: space charge limited current at the surface
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Secondary Emission Model by Furman & Pivi

Mathematically self-consistent
Phenomenological- don’t involve secondary physics but fit the data
A number of parameters to fit the measured SEY data
Built-in SEY data for copper and stainless steel
Monte Carlo technique has been used
Detailed description on algorithms can be found in M. A. Furman
and M. Pivi’s paper.
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Secondary Emission Model: Vaughan’s Formula I

For material other than copper and stainless steel or material with
different SEY curve from the built-in SEY curve in Furman-Pivi’s
model, Vaughan’s model has less parameters than Furman-Pivi’s
model thus relatively easier to be adjusted to fit the new SEY
curve
Vaughan’s formula:

δ(E , θ) = δmax (θ) · (ve1−v )k , for v ≤ 3.6 (4a)
δ(E , θ) = δmax (θ) · 1.125/v0.35, for v > 3.6 (4b)

where

v =
E − E0

Emax (θ)− E0
,

k = 0.56, for v < 1,
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Secondary Emission Model: Vaughan’s Formula II

k = 0.25, for 1 < v ≤ 3.6,

δmax (θ) = δmax (0) · (1 + kθθ2/2π),

Emax (θ) = Emax (0) · (1 + kEθ
2/2π).

User adjustable parameters: Emax (0), E0, δmax (0), δ0, kθ and kE
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Layout of OPAL library

OPAL is the short for “Object-Oriented Parallel Accelerator
Library”.
Based on the CLASSIC library and the IP2L framework.
CLASSIC: building portable accelerator models and algorithms,
MAD input language to specify complicated accelerator systems
in general.
IP2L: providing an integrated, layered system of parallel objects
relayed to large scale 3D particle and field calculations.
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Dark current and multipacting module in OPAL

Implemented in one of the flavors of OPAL, the object-oriented
parallel ESPIC code OPAL-t.
Geometry, particle position, momentum and particle type (primary
bunch, field emitted electrons or secondaries), are stored in the
H5hut file format.
A re-normalization of simulation particle number approach is used
to prevent the exponentially growth of particles in the
computational domain.
Post processing tools are provided in the H5hut library and by the
use of Paraview or Visit.
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Benchmark Against the TxPhysics Library
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Why the Non-stationary Theory?

Only benchmarking the implementation of secondary emission
model is not sufficient, the tracking process and the non-trivial
geometry handling algorithms need also to be benchmarked
Simple geometry

z

y
x

d
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Real Number of Simulation Particles
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theory
OPAL−Furman−Pivi’s model

f = 200MHz, V0 = 120V , d = 5mm, Furman and Pivi’s model and
copper’s SEY data
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Real Number of Simulation Particles
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theory
OPAL−Vaughan’s model

f = 1640MHz, V0 = 120V , d = 1mm, using Vaughan’s model and
silver’s SEY data
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Real Number of Simulation Particles
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Furman−Pivi model
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Renormalized Simulation Particles I
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theory

OPAL−const−particles

OPAL−real−emission

f = 200MHz, V0 = 120V , d = 5mm, Furman-Pivi’s model, copper
and re-normalize to a constant number of simulation particles
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Renormalized Simulation Particles II
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theory

OPAL−const−particles

OPAL−real−emission

f = 1640MHz, V0 = 120V , d = 1mm, Vaughan’s model, silver
and re-normalize to a constant number of simulation particles

C. Wang () ICAP 2012, Warnemünde, Germany 23-08-2012 41 / 63



Renormalized Simulation Particles III
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Furman−Pivi model

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

 

 
Vaughan model

Relative deviations of simulation results from the theoretical
predicted values (re-normalize to const. simulation particle)
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Why did we do a benchmark experiment after we have already
done a perfectly matched code-theory benchmark?
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The ultimate test of a model/code is the comparison with "Nature"!
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Experiment configurations I

The experiment has been done on a 73 MHz, λ/4 transmission
line resonator.

Figure: The RF resonator after installation

C. Wang () ICAP 2012, Warnemünde, Germany 23-08-2012 46 / 63



Experiment configurations II

Electron pickup with the vacuum feed-through is mounted through
a small hole in the middle of ground plate.

Figure: The configuration of parallel plates and pickup
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Experiment configurations III

Nano-second time resolved measurement circuit.

Figure: Sketch of measurement
circuit

Figure: Real measurement circuit in
a sealed metal box
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Experiment configurations IV

The current source of the measurement circuit for SPICE
simulation is the electron impact rate which can be predicted
either by the none-stationary theory or by OPAL simulation and
simulated output can be directly compared with the signal in the
oscilloscope.

Figure: Simulated impact rate as current source of the measurement circuit
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Results of the experiment I

Signal directly from the oscilloscope.

Figure: The measured multipacting signal
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Results of the experiment II

Comparison between simulation and measurement.

Figure: The comparison between measured multipacting signal after
digital filtering and the simulated one

C. Wang () ICAP 2012, Warnemünde, Germany 23-08-2012 51 / 63



Outline

1 Background and Goal
Dark current and Multipacting Phenomenas
Existing Tools: Theory and Codes
Motivation and Goal of Our Work

2 Schemes, Models and Implementations in OPAL
Geometry Handling
Surface Physics Models
Implementation in OPAL

3 Benchmark Results
Code to Code Benchmark of Furman-Pivi’s model
Benchmark Against Non-stationary Theory
Benchmark Against a Nano-second Time Resolved Experiment

4 Preliminary results
Dark Current Simulation on CTF3 Gun
Multipacting simulation on Cyclotron Cavity

C. Wang () ICAP 2012, Warnemünde, Germany 23-08-2012 52 / 63



ANIMATION OF DARK CURRENT SIMULATION

We add a post processing feature which shows the origin
positions and phase of dark current particles which are alive
beyond user specified positions
Animation of CTF3 gun
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Multipacting of CYCIAE-100MeV Cyclotron I

Preliminary results only on full RF power case, further extension
needed to evaluate prone multipacting conditions on different
power level

Figure: The electric field in the cavity
and initial distribution of electrons
(projection view at the symmetric
plane of the cavity along the radius)

Figure: The RF cavity of CYCIAE-100
cyclotron under the magnetic stray
field
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Multipacting of CYCIAE-100MeV Cyclotron II

According to experiments done by LHC project in CERN, the
secondary emission curve for copper varies for different surface
treatments:
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Multiplication within 1 RF cycle has been observed:
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Multipacting of CYCIAE-100MeV Cyclotron III
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Conclusions

We have successfully modeled, implemented and benchmarked
dark current and multipacting modeling capabilities in OPAL
Thanks to the parallel nature of OPAL, large scale structures can
be analyzed
A full set of pre- and post-processing tools are available in order to
enable complex studies [arXiv:1205.3098v2]
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Future Plan

Further multipacting study on different RF power level is useful to
predict and understand the behavior of the cavities of
CYCIAE-100
Obtain hot spots in different RF power level by simulations to
determine the position where a special surface treatment is
needed to suppress multipacting
Add GUI to pre-define different surface materials on a geometry,
in order to make multiple surface material simulation possible.
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Appendix: Formulas for Non-Stationary Theory I

The solution of (3) when electron hit the plates, i.e., when
ξ(ϕ,ϕ0,u) = λ or 0, is a probabilistic number, as the emission
velocity u is a random number
The probability density of the least root(on variable τ ) of equation
(3) can be expressed by the known distribution
fu = uv2

ω

v2
t

exp
(
−u2v2

ω

2v2
t

)
of velocity u:

G(τ |ϕ0;λ) =

∣∣∣∣dg(τ |ϕ0;λ)

dτ

∣∣∣∣ fu[g(τ |ϕ0;λ)]

G(τ |ϕ0; 0) =

∣∣∣∣dg(τ |ϕ0; 0)

dτ

∣∣∣∣ fu[g(τ |ϕ0; 0)]

where, u = g(τ |ϕ0;λ) and u = g(τ |ϕ0; 0) respectively (monotonic
function)
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Appendix: Formulas for Non-Stationary Theory II

Emission rate (electrons/radian) in plate U/D at phase ϕ:

CU(ϕ) =

∫ ϕ

0
CD(ϕ′)Gds,D(ϕ− ϕ′|ϕ′)δds,D(ϕ− ϕ′|ϕ′)dϕ′

+

∫ ϕ

0
CU(ϕ′)Gss,U(ϕ− ϕ′|ϕ′)δss,U(ϕ− ϕ′|ϕ′)dϕ′ + ΨU(ϕ)

CD(ϕ) =

∫ ϕ

0
CD(ϕ′)Gss,D(ϕ− ϕ′|ϕ′)δss,D(ϕ− ϕ′|ϕ′)dϕ′

+

∫ ϕ

0
CU(ϕ′)Gds,U(ϕ− ϕ′|ϕ′)δds,U(ϕ− ϕ′|ϕ′)dϕ′ + ΨD(ϕ)

Volterra integral equations of the second
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Appendix: Formulas for Non-Stationary Theory III
Impact rate (electrons/radian) in plate U/D at phase ϕ:

IU(ϕ) =

∫ ϕ

0
CD(ϕ′)Gds,D(ϕ− ϕ′|ϕ′)dϕ′

+

∫ ϕ

0
CU(ϕ′)Gss,U(ϕ− ϕ′|ϕ′)dϕ′

ID(ϕ) =

∫ ϕ

0
CD(ϕ′)Gss,D(ϕ− ϕ′|ϕ′)dϕ′

+

∫ ϕ

0
CU(ϕ′)Gds,U(ϕ− ϕ′|ϕ′)dϕ′

Number of particles:

N(ϕ) =

∫ ϕ

0

(
CU(ϕ′) + CD(ϕ′)− IU(ϕ′)− ID(ϕ′)

)
dϕ′
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