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S1S-100 Proton Cycle

e Basically, SIS-100 is heavy ion synchrotron within FAIR project.
¢ In addition, there will be proton operation.

— Four bunches injected and merged to single bunch.

— Number of protons per cycle: N, = 2 x 10%5.

— Injection energy: E;,; = 4 GeV.

— 20 emittances at injection: (e, €,) = (13,4) mm mrad

— Maximum energy at extraction: E.,; = 29 GeV — ~ = 31.9.

— On the other hand, operation is planned to occur below transition energy.

Therefore, transition energy corresponding to ;. = 45.5.
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Dispersion function functions of the unperturbed lattice in one sector,

high ~;, lattice vs “ion-like” lattice, WP: (21.8, 17.7).
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General Lattice Properties’(

Unperturbed lattice with working point (21.8,17.7)

high ~;, lattice | “ion-like” lattice

Number of quadrupole families 3 2

~ir 45.5 18.4
max dispersion function D, 4./ (m) 2.9 1.3
max beta functions, (82mazs By,maz)/ (M) (72, 29) (19, 21)

max 20 beam width for 6 = 0 and
(€z20 X €y20) = (13 X 4) mm mrad |(31 X 11) mm| (16 X 9) mm

natural chromaticities, (£nat,25 Enat,y) (—2.4,—1.4) (—0.9,—1.1)

Chromaticities defined by AQ = £6Q




Maximum Horizontal Beta Fun 5% / I'-

1. High-~;, lattice: in general, no lattice functions found for Q, < 21.5.

2. Lattice perturbed by magnet errors. ] ]
Maximum horizontal beta

e Linear lattice functions perturbed by function for Q, = 17.7
y = 17.7.

random gradient errors in the main

1000 . I
quadrupoles. i — high y,_lattice | -
800 — ijon-like lattice|
e Assume Gaussian distribution trun- .
£ 600+ .
cated at 20 with o, =~ 3.0- 1073 -~
]
% 400 ]
o At Q. = 21.8:
_ _ 200
— ideal lattice: B3 e = 72 m ,
. %F N N _/ !
— pert lattice: 8, 0z = 99 m 1 21,2




Resonance Diagram

¢ In addition, non-linear random multipole
errors in magnets drive resonances which

reduce Dynamic Aperture (DA).
e DA scan using MAD-X to see them.

e Look for WP which fits well in resonance

diagram, confirms WP (21.8,17.7).

e For (), < 21.5 no DA calculated because

lattice functions not determined.
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Resonance Diagram and Tune Spr

In addition:

e High ~,, lattice with
large natural chromaticities

€nat,m — _2°4a €nat,y — _1°4a

and momentum spread up to

& = +£0.005 (at E = 7 GeV).

e Resulting tune spread AQ = £QJ:
AQ, = +0.27, AQ, = +0.12

e Loss of particles with large 0 within

one synchrotron period.
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Resonance Diagram and Tune Sj

Cures:
Q. € [21,22],Q, € [17,18]
10000 WP’s

1. Correct chromaticity to reduce tune spread

to AQ, , = =0.1:

e Correction with sextupoles, reduce DA. la_wp_Wp2L07_gamids 5 aldat usig 126
18 T T T

e Use 52 sextupoles magnets in SI1S-100 s |
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Tune Spread and Changed Opt@k"#'

2. Change optics during ramp to use the high ~;, lattice only at high energy.

e At low energies, usage of ion-like lattice with ~;,. = 18.4.
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e Smaller chromaticity (Fig left) yields reduced tune spread.

e Smaller maximum beta function (Fig right) provides larger DA.
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“Diagonal" DA: Ew,lim(¢) = elim(¢) COS2 qb, 6y,lz’m(¢) = Elz’m(qb) sin2 (]5

Diagonal Dynamic Apertureﬁ

Procedure:

e Choose ¢ = (0, 0.1w, 0.27w, 0.37w, 0.47, 0.57)

e Track a single particle with initial coordinates according to €;;,,,(¢) relative

to the closed orbit deviation created by a momentum deviation.
Apply 0 = (_dmaaj’ 0, 5maa:)-
e Short term: 500 turns

e Vary €,;,,(¢) for each ¢, until the maximum for stable particle motion is

found. Apply nested interval procedure.

e Use MAD-X code.
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E =4 GeV, § =0, £0.003 E =29 GeV, & = 0, +0.004
Epearn = (13 X 4) mm mrad €pearn = (2.1 X 0.65) mm mrad
250 T | T | T | T ~~ 70 | T | T
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Maximum energy: Short term horizontal DA ~ 2 X horizontal spatial beam width.




Multi Particle Simulation
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Simulation using MAD-X:

| o—o Vi
40k il Ts,analyt Urf:ZO kV
e Constant energy. 2 | oo T manx
>
.. ] o 30-
e Rf cavity introduces synchrotron motion 8 |
—i
— oscillation of tune due to J spread. :mzo oo/ »
. . >'.F 107 ///;;"————/ —
e 100 particles during 16000 turns to cover 7
at least one synchrotron period. %5 10 15 20 25
E/(GeV)
e v at high energies: keep 7 = const. 1 1
T
e Compare synchrotron periods T, simulati- .
T 2w (32 E
on vs analytic formula, where s —
d heU?“f'”] COS ¢s|

U,; =300 kV, h =5, ¢, =0.
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Multi Particle Simulation. Beamf

13
. . 50—
e Thin lens tracking to keep chance to ooV
40, 1= Pioss /(%0) ]
include later space charge. 7 |
. . 301 N
e Particle loss found without space 7
charge: I — i
10} .
o Ploss up to 4 % I i
— only for high 4, %510 ° 0" 25 30

E/(GeV)
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Inclusion of Space Charge {114 E
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e Regard for incoherent space charge fields.
e Frozen space charge, no oscillation of betatron tune by synchrotron motion.

e Space charge introduced by thin beambeam elements with truncated Gaussian

profile characterised by rms width z,,,;(s) = \/,Bz(s)ez,rms, z =x,v.
e Algorithm! consists of four steps:

1. Convert lattice to thin lens lattice (MAD-X).

2. Insert marker elements equidistantly around the ring (extern).

3. Determine beta functions at marker positions — z,,,,5(s) (MAD-X).
4. Replace markers with beambeam elements (extern).

1 Method received from V Kapin
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N,r
Laslett tune shift: AQ. = — 53 —— , 2 = X,Y
2m BB VE (Ve + /5)
for a Gaussian beam with 2 x 10!% protons
Rf cycle (O Chorniy): Maximum rf voltage re-
0,15 ‘ ‘ ‘ —
ached at £ = 7 GeV. In addition, assume o1l “gf 1
, Q|
bunching factor B, according to rf voltage. 0,05- \\Qy‘
O __________________________________________ —
e B¢ changes 0.08 — 0.027. f /
-0,051 .
e Reach largest space charge tune shift here. -0,1F .
U -0,15¢ |
_ 0% 5 10 15 20 25 20
Expect strongest influence of space charge at Ein ! (GeV)
E =7 GeV. Data from O Chorniy, priv comm
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Dynamic Aperture with Space Cf{%
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e In fact, attempt to determine lattice func- 250 |

T 1 T

— DA, N =0 |
13

— DA, N =2x 10"

tion at £ = 7 GeV including space charge

as well as systematic and random magnet

errors failed for some random magnet error

/ (mm mrad)
a1
o

samples.

E ..
y,lim

e On the other hand, if lattice functions were 50

found, very similar dynamic apertures with

_ % 50 100 150 200 250
and without space were found. e ./ (mm mrad)

X, i

Result: no particle loss at E = 7 GeV, instead ...
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Particle Loss with Space Charﬁ% 'ﬁ;'»ﬁ

.. instead, particle loss found at high energies

e Close to maximum energy, major beam

50 ‘ I ‘ I ‘ I

loss due to lattice, is only slightly modi- e—eY,
: —aP__ (N =0) /(%)
fied by space charge. 40+ P s -
I HPIoss(Np:ZX]'O ) 1 (%)
e Around E = 20 GeV significant beam loss 30F .
only if space charge is present.
20- — o o ]
— Space charge stronger at lower energy.
101 -
e Minimum energy for beam loss: f 5./‘/7_’/.
. . O L& | & P | T g | \ !
Beam loss due to interconnection of space b5 T8 07 5 %

charge and high ~;, lattice.
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¢ Numerical study on the proton cycle of SIS-100 to estimate beam loss.

e Simulation with independent particles, thin lens tracking tool of MAD-X.

— Crucial point: High ~;, optics required — complicated lattice functions.
— Restrict usage of high ~;,. optics to high energies.
— Simulations without and with space charge — frozen space charge.

— Influence of synchrotron oscillations regarded with respect to chromatic
tune shift, neglected with respect to space charge tune shift.
— Important mechanism for space charge induced beam loss neglected.

e Results:

— No beam loss at low energies with ion-like optics.
— Close to maximum energy, beam loss dominated by high ~;, optics.
— At medium energies, beam loss due to interconnection of space charge

and lattice properties.
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Quantitative results are preliminary because of small particle numbers and usage
of only one sample of random magnet in simulations, and because of the strongly

simplified space charge treatment. Therefore:

e Next step: repeat simulations with larger particle numbers and different

random error samples to consolidate results.

¢ It would be desirable to use a tracking code which can include the influence of
synchrotron motion on the space charge because it is an important ingredient

to the description of space charge induced beam loss.

— PTC-ORBIT installed, (special thanks to F. Schmidt).




