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SIS-100 Proton Cycle
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• Basically, SIS-100 is heavy ion synchrotron within FAIR project.

• In addition, there will be proton operation.

– Four bunches injected and merged to single bunch.

– Number of protons per cycle: Np = 2 × 1013.

– Injection energy: Einj = 4 GeV.

– 2σ emittances at injection: (ǫx, ǫy) = (13, 4) mm mrad

– Maximum energy at extraction: Eext = 29 GeV → γ = 31.9.

– On the other hand, operation is planned to occur below transition energy.

Therefore, transition energy corresponding to γtr = 45.5.
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Dispersion Function
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Dispersion function functions of the unperturbed lattice in one sector,

high γtr lattice vs “ion-like” lattice, WP: (21.8, 17.7).
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General Lattice Properties
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Unperturbed lattice with working point (21.8, 17.7)

high γtr lattice “ion-like” lattice

Number of quadrupole families 3 2

γtr 45.5 18.4

max dispersion function Dx,max/(m) 2.9 1.3

max beta functions, (βx,max, βy,max)/(m) (72, 29) (19, 21)

max 2σ beam width for δ = 0 and

(ǫx,2σ × ǫy,2σ) = (13 × 4) mm mrad (31 × 11) mm (16 × 9) mm

natural chromaticities, (ξnat,x, ξnat,y) (−2.4, −1.4) (−0.9, −1.1)

Chromaticities defined by ∆Q = ξδQ



==0mm

Maximum Horizontal Beta Function
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1. High-γtr lattice: in general, no lattice functions found for Qx < 21.5.

2. Lattice perturbed by magnet errors.

• Linear lattice functions perturbed by

random gradient errors in the main

quadrupoles.

• Assume Gaussian distribution trun-

cated at 2σ with σrel ≈ 3.0 · 10−3

• At Qx = 21.8:

– ideal lattice: βx,max = 72 m

– pert lattice: βx,max = 99 m

Maximum horizontal beta

function for Qy = 17.7.
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Resonance Diagram
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• In addition, non-linear random multipole

errors in magnets drive resonances which

reduce Dynamic Aperture (DA).

• DA scan using MAD-X to see them.

• Look for WP which fits well in resonance

diagram, confirms WP (21.8, 17.7).

• For Qx < 21.5 no DA calculated because

lattice functions not determined.
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Resonance Diagram and Tune Spread
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In addition:

• High γtr lattice with

large natural chromaticities

ξnat,x = −2.4, ξnat,y = −1.4,

and momentum spread up to

δ = ±0.005 (at E = 7 GeV).

• Resulting tune spread ∆Q = ξQδ:

∆Qx = ±0.27, ∆Qy = ±0.12

• Loss of particles with large δ within

one synchrotron period.
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Resonance Diagram and Tune Spread
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Cures:

1. Correct chromaticity to reduce tune spread

to ∆Qx,y = ±0.1:

• Correction with sextupoles, reduce DA.

• Use 52 sextupoles magnets in SIS-100

to correct two variables, ξx, ξy.

• Provides freedom to apply additional

condition
52
∑

n=1

(k2L)2
n → minimum

to reduce influence of sextupoles.
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Tune Spread and Changed Optics
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2. Change optics during ramp to use the high γtr lattice only at high energy.

• At low energies, usage of ion-like lattice with γtr = 18.4.
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• Smaller chromaticity (Fig left) yields reduced tune spread.

• Smaller maximum beta function (Fig right) provides larger DA.
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Diagonal Dynamic Aperture
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“Diagonal” DA: ǫx,lim(φ) = ǫlim(φ) cos2 φ, ǫy,lim(φ) = ǫlim(φ) sin2 φ.

Procedure:

• Choose φ = (0, 0.1π, 0.2π, 0.3π, 0.4π, 0.5π)

• Track a single particle with initial coordinates according to ǫlim(φ) relative

to the closed orbit deviation created by a momentum deviation.

Apply δ = (−δmax, 0, δmax).

• Short term: 500 turns

• Vary ǫlim(φ) for each φ, δ until the maximum for stable particle motion is

found. Apply nested interval procedure.

• Use MAD-X code.
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Diagonal Dynamic Aperture
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E = 4 GeV, δ = 0, ±0.003 E = 29 GeV, δ = 0, ±0.004

ǫbeam = (13 × 4) mm mrad ǫbeam = (2.1 × 0.65) mm mrad
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Maximum energy: Short term horizontal DA ≈ 2×horizontal spatial beam width.
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Multi Particle Simulation
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Simulation using MAD-X:

• Constant energy.

• Rf cavity introduces synchrotron motion

→ oscillation of tune due to δ spread.

• 100 particles during 16000 turns to cover

at least one synchrotron period.

• γtr at high energies: keep η = const.

• Compare synchrotron periods Ts, simulati-

on vs analytic formula, where

Urf = 300 kV, h = 5, φs = 0.
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Multi Particle Simulation, Beam Loss
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• Thin lens tracking to keep chance to

include later space charge.

• Particle loss found without space

charge:

– Ploss up to 4 %
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Inclusion of Space Charge
14

• Regard for incoherent space charge fields.

• Frozen space charge, no oscillation of betatron tune by synchrotron motion.

• Space charge introduced by thin beambeam elements with truncated Gaussian

profile characterised by rms width zrms(s) =
√

βz(s)ǫz,rms, z = x, y.

• Algorithm1 consists of four steps:

1. Convert lattice to thin lens lattice (MAD-X).

2. Insert marker elements equidistantly around the ring (extern).

3. Determine beta functions at marker positions → zrms(s) (MAD-X).

4. Replace markers with beambeam elements (extern).

1 Method received from V Kapin
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Space Charge Parameters during Ramp
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Laslett tune shift: ∆Qz = − Nprc

2πβ2γ3Bf
√

ǫz

(√
ǫx +

√
ǫy

), z = x, y

for a Gaussian beam with 2 × 1013 protons

Rf cycle (O Chorniy): Maximum rf voltage re-

ached at E = 7 GeV. In addition, assume

bunching factor Bf according to rf voltage.

• Bf changes 0.08 → 0.027.

• Reach largest space charge tune shift here.

⇓
Expect strongest influence of space charge at

E = 7 GeV.
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Dynamic Aperture with Space Charge
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• In fact, attempt to determine lattice func-

tion at E = 7 GeV including space charge

as well as systematic and random magnet

errors failed for some random magnet error

samples.

• On the other hand, if lattice functions were

found, very similar dynamic apertures with

and without space were found.
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Result: no particle loss at E = 7 GeV, instead ...
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Particle Loss with Space Charge
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... instead, particle loss found at high energies

• Close to maximum energy, major beam

loss due to lattice, is only slightly modi-

fied by space charge.

• Around E = 20 GeV significant beam loss

only if space charge is present.

→ Space charge stronger at lower energy.

• Minimum energy for beam loss:

Beam loss due to interconnection of space

charge and high γtr lattice.
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Summary
18

• Numerical study on the proton cycle of SIS-100 to estimate beam loss.

• Simulation with independent particles, thin lens tracking tool of MAD-X.

– Crucial point: High γtr optics required → complicated lattice functions.

– Restrict usage of high γtr optics to high energies.

– Simulations without and with space charge → frozen space charge.

– Influence of synchrotron oscillations regarded with respect to chromatic

tune shift, neglected with respect to space charge tune shift.

→ Important mechanism for space charge induced beam loss neglected.

• Results:

– No beam loss at low energies with ion-like optics.

– Close to maximum energy, beam loss dominated by high γtr optics.

– At medium energies, beam loss due to interconnection of space charge

and lattice properties.
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Open Points
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Quantitative results are preliminary because of small particle numbers and usage

of only one sample of random magnet in simulations, and because of the strongly

simplified space charge treatment. Therefore:

• Next step: repeat simulations with larger particle numbers and different

random error samples to consolidate results.

• It would be desirable to use a tracking code which can include the influence of

synchrotron motion on the space charge because it is an important ingredient

to the description of space charge induced beam loss.

→ PTC-ORBIT installed, (special thanks to F. Schmidt).


