

# Status of the HOM Calculations for the BERLinPro main Linac Cavity\*

\*Work supported by Federal Ministry for Research and Education BMBF under contract 05K10HRC and 05K10PEA



Axel Neumann for the **DoHRo** Collaboration (TU Dortmund, U Rostock, HZB) ICAP12, 24.08.12 Warnemünde, Germany







## (current) Layout of BERLinPro

|                                             | Basic Mode                                               | Short Bunch Mode      |             |               |
|---------------------------------------------|----------------------------------------------------------|-----------------------|-------------|---------------|
| Bunch charge, pC                            | 77                                                       | ~ 10                  | -           |               |
| Bunch repetition rate, GHz                  | 1.3                                                      | variable              |             | Gun:          |
| Max average current, mA                     | 100                                                      | ≤ 1                   |             | 0.4-1.4 cell  |
| Beam kinetic energy, MeV                    | 50                                                       | 50                    |             | SC cavity +   |
| Transv. emitt., norm., mm mrad              | ~ 1                                                      | 15                    |             | NC cathode    |
| Bunch length, ps, rms                       | 2.0                                                      | 0.1                   | Boostor:    |               |
| Relative energy spread, % rms               | ~ 0.5                                                    | 13                    | 3 two cell  |               |
| 600 kW<br>Dump<br>5 M                       | Main linac:<br>3 seven ce<br>SC cavities                 | II<br>Merger          | SC cavities | 600 kW 200 kW |
| Mai<br>1 <sup>st</sup> t<br>2 <sup>nd</sup> | n Linac<br>urn: 6 MeV →<br>turn: 50 MeV →<br>Recirculato | 50 MeV<br>6 MeV<br>or |             |               |
|                                             |                                                          |                       |             |               |

ICAP12, 24.08.12, Warnemünde, A.Neumann, FRAAC3

.

#### BERLinPro: Cavity types and HOM absorbers















#### Linac cavity components

#### Center cells

- Determine cavity figure of merit: *E*<sub>peak</sub>, *H*<sub>peak</sub>, *R*/Q
- Properties of HOM spectrum
- Controls frequencies of HOM passbands and dispersion relations!
- Determines cell-to-cell coupling and how sensitive HOM spectrum is to variation in cell shape

#### End cells

- Asymmetric design helps prevent trapped modes
  - but field flatness of fundamental  $TM_{010}$  has to be maintained
- Responsible for coupling HOMs to HOM absorber
- Directly controls quality factors of HOMs

#### Beam Pipe

• Diameter determines cutoff of propagating modes + coupling of HOMs to WGs

#### •HOM absorber + load

- Absorber material properties determine specific mode losses.
- Dimensions of WG determine cutoff frequency and residual losses of fundamental
- Orientation determines coupling to polarized modes

ICAP12, 24.08.12, Warnemünde, A.Neumann, FRAAC3

(See N. Valles et al. HOMSC12, Daresbury)









#### Cavity design options

|                                                 | Cavity electro-magnetic<br>parameter |                                      |
|-------------------------------------------------|--------------------------------------|--------------------------------------|
| Parameter for $\beta$ =1                        | JLAB design scaled (mid-cell)        | Cornell design (mid-cell)            |
| R <sub>iris</sub> (mm)                          | 40.25                                | 36.0                                 |
| R/Q (Ω) per cell                                | 104.2                                | 111.1                                |
| Transit time factor                             | 0.77                                 | 0.77                                 |
| Geometry constant G ( $\Omega$ )                | 278.9                                | 272.8                                |
| E <sub>peak</sub> /E <sub>acc</sub>             | 2.44                                 | 2.06                                 |
| B <sub>peak</sub> /E <sub>acc</sub> (mT/(MV/m)) | 4.14                                 | 4.02                                 |
| Cell-to-cell coupling (%)                       | 3.2                                  | 2.2                                  |
| <b>Q</b> <sub>ext</sub> operational range       | 3·10 <sup>7</sup> -1·10 <sup>8</sup> | 3·10 <sup>7</sup> -1·10 <sup>8</sup> |



B. Riemann et al., IPAC 11

Best option so far seems Cornell cell geometry combined with JLAB style HOM Dampers, combined with flexibility of DESY/BESSY type TTF-III FPC



Model for calculation purposes



#### The current Linac Cavity design



Calculate HOM/BBU performance

Geometry factor  $G(\Omega)$ 

 $Q_{\rm ext}$ 

 $5 \cdot 10^{7}$ 

272.7

## **Calculation: Methods**



- Only symmetry plane in fundamental coupler plane
- No axial symmetry prohibits use of 2-D based cavity optimizer schemes (using e.g. Superfish, SLANS/CLANS)
- 3-D MWS CST<sup>®</sup> eigenmode used to calculate cavity modes (Jacobi-Davidson method)
- Cavity modeled in tetrahedral or hexahedral mesh type
- To calculate  $Q_{\text{ext}}$  with post-processing hexahedral mesh had to be used
- Transverse *R*/*Q* was directly calculated by Lorentz forces of on-axis fields:

(Panofsky-Wenzel theorem) using MATLAB<sup>™</sup> based scripts and exported field distribution along curves

#### Design iteration so far



Modeling of cavity, change in geometry, waveguide assembly

Time domain wakefield calculations to determine mode spectrum

EM Solver calculations to determine field distribution, verify time domain results

Determine transverse shunt impedance of HOM plus all BBU relevant parameters (R/Q,  $Q_{ext}$ ,  $\omega$ ,  $\phi_{Pol}$ ) Matlab based post-processing

BBU calculations to determine threshold current and identify most dangerous modes

See Y. Petenev et al., IPAC2011, San Sebastian, Spain

## HOM calculations



Limited to about 3 GHz due to computational time, 12-15 lines/wavelength



ICAP12, 24.08.12, Warnemünde, A.Neumann, FRAAC3



High Q quadrupole modes, quasi localized within the structure Are they of any concern?



BBU limit given by  $R/Q^*Q_{ext} \rightarrow$  Calculate normalized shunt impedance on axis

## HOM Calculations: longitudinal R/Q spectrum



#### HOM calculations: transverse R/Q spectrum



#### A closer look into the modes



s [mm]

Sort out beam tube modes, like here  $TE_{11}$ Due to boundary condition they form SW

#### A closer look into the modes



ICAP12, 24.08.12, Warnemünde, A.Neumann, FRAAC3

Due to boundary condition they form SW

1.57895

2.26036e+009

Loaded Freq

External Q

#### Trapped Modes $\rightarrow$ sorting the modes





Is that a real effect?

Assume a coupler kick at the HOM or numerical inaccuracies?

Perform *R*/*Q* calculations at different integration paths

#### Identify modes by polar R/Q maps



$$R_{\perp x} \approx \left| \frac{c}{\omega} \frac{\sqrt{R_{\parallel}(x_2)} - \sqrt{R_{\parallel}(x_1)}}{x_2 - x_1} \right|^2$$

#### Example modes



Polar FFT or multipole expansion to determine contribution of each pole

#### Shift of mode's e-m center with respect to beam axis



Mode's center shifted by more than vertical beam size  $\sigma_v$  in FPC direction

#### What now?

- We are facing three problems to solve:
  - Residual R/Q<sub>⊥</sub> components on axis for quadrupole modes

     → further studies with different meshes and varibale FPC positions needed
  - 2. Solve problem of most dangerous modes by tuning HOMs to lower  $Q_{ext}$  while still preserving TM<sub>010</sub>- $\pi$  properties

High computational effort so far: Apply CSC scheme of segmented cavity (see WEP17, T. Galek et al.)



Allows 2-D calculation of the symmetric parts Compute S-parameters of all sub-structures and concatenate the results

Fields and R/Q to be calculated by 2-D Eigenmode Solver (MAFIA) Extract the  $Q_{ext}$  by Vector Pole Fitting of the resulting  $S_{21}$  curve

## CSC for HOM tuning + Cavity string analysis

Full Brillion diagram by computing with periodic boundary conditions under 0 and  $\pi$  cell-to-cell phase shift



#### Future plans: Tune HOMs $\rightarrow$ prototyping





#### Thank you for your attention and many thanks to all people involved:

Main Linac cavity: Supported by the Federal Ministry for Research and Education BMBF under contract 05K10HRC and 05K10PEA

T. Weis, B. Riemann (TU Dortmund)

U. van Rienen, T. Flisgen, T. Galek, K. Papke<sup>+</sup>, K. Brackebusch (U Rostock)

Jens Knobloch, W. Anders, A. Neumann (HZB)

+ BERLinPro design team

Thanks to

F. Marhauser\*, R. Rimmer (JLab)

\* now µMuons Inc., \*now at CERN











Colliding ship experiment under crossing angle  $\alpha$  observed in Warnemünde