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Abstract 
We analyze radiation of a small bunch crossing a 

boundary between two dielectrics in a cylindrical 
waveguide. The main attention is paid to investigation of 
dynamics of a charge energy loss and the effect of the 
boundary on the electromagnetic field (EMF). Algorithms 
of computations for the field and the energy loss are 
founded upon certain transformations of integration path. 
We consider two instances in detail: the bunch is flying 
from dielectric into vacuum and from vacuum into 
dielectric. In both cases we compare the energy losses by 
transition radiation (TR) and by Cherenkov one (CR). Our 
investigation shows, for example, that energy loss is 
negative at certain segments of the bunch trajectory.  

INTRODUCTION 
One of the problems being important for the wakefield 

acceleration technique and for new methods of generation 
of microwave radiation consists in analysis of effect of 
the boundary on the wave field when a bunch flies into a 
dielectric structure or from one. It should be noticed that 
energetic characteristics of TR at a single boundary in a 
waveguide and in the case of a dielectric plate were 
investigated in papers [1,2]. However, the most attention 
was paid to study the energetic spectrums of generated 
modes. Dynamics of an energy loss as well as an EMF 
structure has not been analyzed.  

Our research is based on original approach used 
previously for the case of the vacuum-plasma boundary 
[3]. But Cherenkov radiation is not generated in such 
situation; therefore it varies radically from the case under 
consideration. The electromagnetic field structure of the 
point charge was partially investigated in our works [4,5]. 
Now we analyze dynamics of the energy losses which 
allows of better understanding physical phenomena in this 
situation.  

We consider a point charge q  moving in a metal 
circular waveguide of radius a along its axis (z-axis) and 
intersecting the boundary ( 0z = ) between two 
homogeneous isotropic non-dispersive dielectrics with 
permittivity 1ε  ( 0z < ) and 2ε ( 0z > ) at the moment 

0=t . The charge passes uniformly with a velocity 

zecV β=  (c is a light speed in vacuum). 
The analytical solution of the problem is traditionally 

found for the spectral harmonics of the vector potentials 
as an expansion into a series of eigenfunctions of the 
transversal operator [3,6]. Expressions for components of 
the EMF can be easily derived from the formulae for the 

general case of the boundary between two arbitrary 
homogeneous isotropic media [3]. 

We investigate the dynamics of the charge energy loss 
per unit length of the charge motion:   

0→
→−=

r
ctzzqEW β .      (1) 

As it follows from general expressions for EMF the 
charge energy losses in both media have two summands: 

bq WWW 2,12,12,1 += . The first one ( )qW 2,1  is connected with 

so-called by V. L. Ginzburg [7] “forced” field that is 
EMF of the charge in a regular waveguide. It contains CR 
if 2,1Cββ > , 2/1

2,12,1
−= εβC . The second summand ( )bW 2,1  

is connected with the “free” field that is determined by 
the influence of the boundary and includes TR. Each 
summand is decomposition in an infinite series of normal 

modes:        
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The charge energy loss in a regular waveguide with 
homogeneous filling analysed in many papers is equal to 
[8] 
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where n0χ  is the nth zero of the Bessel function ( )xJ0 . 

For analysis of the charge energy loss by TR ( )b
nW 2,1  we 

use the exact integral representation. We investigate it 
with analytical and computational methods. Analytical 
research is an asymptotic investigation with the steepest 
descent technique. Computations are based on original 
algorithm using some transformation of the integration 
path.  

We study two cases in detail: the bunch is flying from 
dielectric ( 11 >ε ) into vacuum ( 12 =ε ) and from 
vacuum ( 11 =ε ) into dielectric ( 12 >ε ). 

THE CASE OF FLYING FROM 
DIELECTRIC INTO VACUUM 

Numerical Approach 
Efficient algorithm used for numerical calculation is 

based on a certain transformation of the initial integration 
path in the complex plane ofω . Earlier such an algorithm 
was used for calculating of the forced field in different 
dispersive media [9] and in a waveguide with the 
boundary between vacuum and cold plasma [3]. We 
demonstrate this method for the vacuum area. 

 ___________________________________________  
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Figure 1: Disposition of the singularities of the 
integrands, corresponding branch cuts and integration 
path in a complex plane of ω  for b

nW  in vacuum (at 
0>t ) if 1Cββ > . 

The first step of the investigation consists of a study of 
the singularities of integrands. Disposition of these 
singularities is presented in Fig. 1. Four branch points 

( )
1

2/1
1

1~ δεωω inn −±=± −  and ( )
2

2~ δωω inn −±=±  are 
pointed with black circles; two pairs of poles 

( ) ( ) 3
2/12

1
1

0 1 δβεβωω inn −−±=±
−

 (situated on the real axis 

if 1Cββ > ) and ( ) ( ) 2/122
0 1

−
−±=± ββωω nn i  are shown with 

crosses. Here 321 ,, δδδ  are positive infinitesimal 
quantities which tend to zero if we do not take into 
account absorption in a medium. It is convenient to have 
the branch cuts as it is shown in Fig. 1. The integrand of 

b
nW  decreases in the upper half-plane of ω  at 0<t  and 

in the lower half-plane of ω  at 0>t  for any value of β .   

As the integration path  goes through the poles ( )1
0nω  

this leads to rather abrupt behavior of integrands. The 
numerical algorithm is adapted for overcoming this 
difficulty. First, solution can be easily written as an 
integral on a half-infinite contour . Further, we can 
transform this contour in an upper half plane ( )ω  into the 
green contour -  (Fig. 1) for 0<t  and in a lower half-
plane into the red contour + for 0>t . The new contours 
should bypass all the singularities and then go parallel to 
the steepest descending path. The integrands have regular 

behavior along these new contours.  Note that, in this 
way, the charge energy loss can be computed in the 
domain both near and far from the boundary. We can also 
optimize the parameters of contours for each 
computation.  

Results and Discussions 
Dynamics of the total energy loss per unit length for the 
1st mode is presented in Fig. 2. We consider the total 
energy loss per the length unit for the nth mode in 
dimensionless unities:  

q
nnn WWW /~ = ,                     (4) 

where q
nW  is the energy loss for Cherenkov mode (3).  

If 1Cββ > , Cherenkov radiation emerges in dielectric. 
CR is reflected and refracted at the boundary and, as a 
result, so-called Cherenkov transition radiation (CTR) is 
generated [4,5]. In vacuum, CTR exists under conditions 

( ) 1/2
1 1 1 1C CTβ β β ε −< < ≡ −  in the area 

( ) βεβ 11 1
2

1 −−=< ctzz . The dimension of this zone 

1z  increases with group velocity of waveguide waves  

( )2
1 11 1gV β ε β= − − .        (5) 

The limit speed 1CTβ  is connected with total internal 
reflection of CR from the boundary. So, if 21 <ε  CTR 
emerges for ultra-relativistic particles with 1β ≈ . If the 
group velocity (5) is more than the charge velocity, that is   

( )2
0 1 11 4 1 2β β ε ε< = − + − + , 

the charge interacts with CTR (Fig. 2 a). One can see that 
the energy loss oscillates with approximately constant 
amplitude in the vacuum area. The situation changes if 

0ββ >  (Fig. 2 b,c), when the charge leaves the CTR 
behind (when the charge interacts with TR only). 
 
 

 
(a) (b) (c) 

Figure 2: The case of flying from dielectric into vacuum.  Dependence of the normalized energy loss for the first 

mode of the whole field on dimensionless time ct/a  for different charge velocities β  (or 211 βγ −= ). Red solid 

line 1 corresponds to the exact calculation. The asymptotic approximations are given as well (blue dashed line 2); 
5.11 =ε , 12 =ε , GHz1020 ⋅= πω , mm5=a , 816.01 =Cβ , 884.00 =β .  
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In this case, the oscillation amplitude lessens as t/1 , 

and the oscillation period ( ) 1
0

−= oncaT χγ  is getting 
larger with increase in γ . 

In Fig.2 one can also see a good coincidence between 
the exact solution (red solid line 1) and the analytical 
asymptotic expressions (dashed blue line 2) in some 
domain outside the boundary. 

We investigate the total energy loss by TR in vacuum 

defined by the integral ( )=
Vt

dzzW
0

as well. Figure 3 

presents the total normalized energy loss for the first 

mode ( )( ) 12
01

2
111 2

~ −
= qJa χε . If 0ββ < , the total 

energy loss has a vibrating character (Fig. 3 a). If 0ββ > , 

this  interaction decreases with t  (Fig. 3 b,c), and 1  
tends to some constant which is proportional to γ .  

THE CASE OF FLYING FROM VACUUM 
INTO DIELECTRIC 

Analogous investigation of the charge energy loss can 
be made for the case of flying from vacuum ( 11 =ε ) into 
dielectric with 2ε . Here we discuss only physical results 
obtained. The dynamics of the energy loss per unit length 
for the first mode of the total field is presented in Fig.4, 
top. One can see that the energy loss is negative in some 
area near the boundary (where the bunch is attracted to it). 
The dimension of this zone decreases with increase in β  
and in 2ε . The total energy loss for the time interval 

( , )t−∞  determined by the integral ( )
∞−

=
Vt

dzzW  is 

shown in Fig.4, bottom. One can see that the total energy 
loss is negative up to the moment  

( ) 1
0 0 2 1nt a cχ γ ε −≈ − . So, this moment 0t  decreases 

with increase in γ and 2ε . The total energy loss is getting 
positive only for 0t t>  when the Cherenkov loss is 
getting dominant. 

Figure 4: The case of flying from vacuum into dielectric.  
Dependence of the normalized energy loss per unit length 
(top) and the normalized total energy loss (bottom) of the 
first mode of the total field on dimensionless time ct/a for 
different charge velocities; GHz1020 ⋅= πω , a = 5 mm. 
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(a) (b) (c) 

Figure 3: The case of flying from dielectric into vacuum.  Dependence of the total normalized charge energy loss for 
the first mode on dimensionless time ct/a for different charge velocities; the same in Fig. 2. 
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