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Abstract

This paper presents an analytical description of space

charge forces generated by charged particle beams. Sug-

gested approach is based on some set of models for particle

distribution function. All necessary calculations have ana-

lytical and closed form for different models for beam den-

sity distributions. These model distributions can be used

for approximation of real beam distributions. The corre-

sponding solutions are included in general scheme of beam

dynamics presentation based on matrix formalism for Lie

algebraic tools. Computer software is based on correspond-

ing symbolic codes and some parallel technologies. In par-

ticular, as computational tools we consider GPU graphic

card NVIDIA. As an example, we consider a problem of

beam dynamics modelling for microprobe focusing sys-

tems.

INTRODUCTION

Most of space charge modelling methods are based on

numerical methods and corresponding programming tech-

nologies. In particular, matrix processors became very pop-

ular in the last time for numerical evaluations (i. e. us-

ing the Particle-in-Cell method). But for long time beam

evolution problems these methods demonstrate rather low

effectiveness. The nature of the corresponding beam dy-

namics needs effective algorithms for space charge field

reconstruction during the beam evolution along the refer-

ence orbit (with coordinate s). For this purpose in this

paper we consider the following two methods: a beam

with elliptical form in transverse four-dimensional phase

space (unbunched beam model) and a beam presented as

six-dimensional ellipses (bunched beam model). For the

both models we use Ferrer’s integrals method [1]. This

method allows to derive corresponding formulae for beam

generated field in symbolic forms. Similar presentation is

compatible with presentation of the corresponding beam

dynamics using Lie algebraic tools formalism [2]. In this

paper we demonstrate evaluation method of electrical field

generated by different distribution functions of beam par-

ticles. The analytical presentation of corresponding solu-

tions is matched with matrix formalism for Lie algebraic

tools [3]. Furthermore this approach can be realized for

solution of Maxwell–Vlasov equations [4].
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DISTRIBUTION FUNCTION IN PHASE

SPACE

In this section we demonstrate basic idea of our ap-

proach using the first models – the unbunched beam

model in four-dimensional space with following coordi-

nates {x, px, y, py}. The corresponding distribution func-

tion f(x, px, y, py, s) can be presented as a function of

κ2 = X
TAX, where X = (x, y, px, py)

T and A is a sym-

metric nonsingular matrix. Let us consider some popular

functions to present space charge distribution.

1) Uniform distribution:

ϕ(κ2) =
2
√
detA

π2
Θ(1− κ

2), Θ(x) =

{

1, x ≥ 0,

0, x < 0.

2) Vladimirov–Kapchinsky (microcanonical) distribution:

ϕ(κ2) =

√
detA

π2
δ(1 − κ

2).

3) Normal (Gauss) distribution:

ϕ(κ2) =

√
detA

4π2
exp

(

−κ
2

2

)

.

Of course, three indicated types of distributions don’t ex-

haust all variety of admissible distributions family. But

these distributions are interesting from point of view of

configuration distributions of charge density in the config-

uration space (in the next we omit the variable s for reduc-

tion).

ρ(x, y) =

∫

R2

f(x, px, y, py) dpx dpy.

Indeed, practically, it is very difficult to measure the func-

tion f(X), but the distribution ρ(x, y) can be obtained with

measurement accuracy. More over, only function ρ(x, y)
defines the electrical potential (or electrical field) which is

necessary for beam dynamics evaluation. Let present the

matrix A in a block matrix form

A =

(

A11 A12

A21 A22,

)

, A
kk =

(

A
kk
)T

, A
21 =

(

A
12
)T

,

then we can write

κ
2 = X

T
AX = X

T
1A

11
X1 +X

T
1A

12
X2+

+X
T
2A

21
X1 +X

T
2A

22
X2,

where X1 = (x, y)T, X2 = (px, py)
T. After some evalua-

tions one can obtain the following equalities.

1) Uniform distribution:

ρ(x, y) =
2qN0

π

√

detA

detA22
(1 − κ

2
r )Θ(1− κ

2
r ),
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where κ2
r = X

T
1CX1, C = A11 − A21

(

A22
)

−1
A12.

2) KV-distribution:

ρ(x, y) =
qN0

π

√

detA

detA22
δ(1− κ

2
r ).

3) Gauss-distribution:

ρ(x, y) =
qN0

2π

√

detA

detA22
exp

(

−κ
2
r

2

)

.

Where q – a particle charge, N0 – a number of particle in

transverse section.

For our long beam model we have I(s, t) =
v0

∫

R2 ρ(x, y, s, t)dxdy = const, where v0 – a lon-

gitudinal particle velocity. For definition of the ma-

trices Aik and C we impose some natural conditions:

1) v0
∫

R2 ρi(x, y) dx dy = I = const, ∀ i = 1, 3;

2) ρi(0, 0) = ρ0. As reference values we choose corre-

sponding values for KV-distribution (the case of an ”ideal

beam”)

ρ0 =
qN0

π

√

detA

A22
, I = v0qN0

√

detA

detA22
detC .

Excepting N0 one evaluates ρ0 = I
√
detC/πv0.

The matrix Ci describes the ellipse for the i-th case, we

can suppose Ci = α2
iC, that is we consider as an ellipse.

Then 2), 3) can be rewritten in the form

ρ1(x, y) = ρ0(1 − α21κ2)Θ(1− α21κ2),

ρ2(x, y) = ρ0Θ(1− α2
2κ

2), ρ3(x, y) = ρ0 exp(−α2
3κ

2),

where κ2 = X
T
1CX1, C – a matrix describing an ellipse

in configuration space for the ideal beam. The second con-

dition for definition of our free parameters we get from the

equality ρ1 = ρ2. After some simple evaluations we get

α1 = 2/3 and α2 = 1. It means that function ρ1 leads

to the same value as homogeneous distribution ρ2, if it be

defined for ellipse XT
1CX1 ≤ 9/4. Analogical evaluations

can be performed for any distributions. We should note that

function ρ3(x, y) has not a compact support. For similar

distributions we should define the probability for ingress-

ing to the interior of ellipse XT
1CX1 ≤ λ2. Here λ2 defines

a ”beam boundary” with some probability. For example,

for probability P = 0.9 we obtain α3 = 9/ (5
√
π erf(1))

and λ = 1/α3.

Besides the mentioned distributions we point the fol-

lowing two distribution: quadratic – ρ4(x, y) = ρ0(1 −
α4
4κ

4)Θ(1 − α2
4κ

4) and cosine-like – ρ5(x, y) =
ρ0 cos

2(α2
5κ

2)Θ(1−κ4/2). Like in previous cases we can

evaluate α4 and α5 (this coefficient evaluates via known

Fresnel function). We should note that described types of

modelling functions (both in phase and in configuration

spaces) demonstrate the suggested approach, which can be

used practically for any distribution function. In particular,

one can use instead of the function ρ(x, y) a polynomial

of quadratic form variable κ2 with some polynomial order

agreed with known nonlinear order for control electromag-

netical fields. As an additional step we can suggest the

method of Padé approximation, which makes possible to

select corresponding coefficients with desired accuracy.

SELF-FIELD OF SPACE CHARGE

For many practical problems of beam physics we can

suggest that phase space distribution function f(X) and

configuration distribution function ρ are functions of trans-

verse coordinates only. In other words f = f(X) and

ρ = ρ(x, y) for some small interval of variable s. In this

case Poisson equation for electrical potential Ψ (inside the

beam ellipsoid), can be written in form

∂2Ψ

∂x2
+

∂2Ψ

∂y2
= − 1

ε0
ρ(x, y). (1)

According to the first section we assume ρ(x, y) =
ρ0ϕ(κ

2), where ϕ – certain function (e. g. one of pointed

five functions) of argument κ2 = X
T
1CX1, X1 = (x, y)T.

For small enough interval ∆s the resulting essential vari-

ation of ellipse axes can be negligible. So, in coordinates

(ξ, η) the ellipse will be canonical: κ2 = ξ2/a2 + η2/b2.

We need to use elliptic coordinates ξ = h coshα cosβ,

η = h sinhα sinβ to solve (1). Poisson equation trans-

forms to the following form

ξ2

α2
+

η2

β2
= − 1

ε0
ρh2

(

cosh2α− cos2 β
)

,

with solution in coordinates ξ, η:

Ψ(ξ, η) = − 1

4ε0
ρ

(

ξ2 + η2 − a− b

a+ b

(

ξ2 − η2
)

)

+Ψ0,

or finally in coordinates x, y:

Ψ(x, y) = − 1

4ε0
ρ
(

x2 + y2−

− a− b

a+ b

(

x2 cos 2γ − y2 cos 2γ + 2xy sin 2γ
)

)

+Ψ0,

where γ = arctan (2c12/(c22 − c11)) – the rotation angle

for coordinates transformation with rotation matrix T.

Let consider the known approach based on Ferrer’s in-

tegral [1]. According to this approach we obtain for inner

potential of elliptic cylinder

Ψ(i) = − πab

eps0

∞
∫

0

Φ
(

κ
2(u)

) du

∆(u)
,

where Φ(κ2) =
∫

κ
2

0 ρ(t)dt, ∆2(u) = (a2 + u)(b2 + u),
κ2(u) = ξ2/(a2 + u)+η2/(b2 + u). One can obtain elec-

trical field generated by space charge

E
(i)
ξ (ξ, η) =

2πab

ε0

∞
∫

0

ξ

a2 + u
ρ
(

κ
2(u)

) du

∆(u)
,

E(i)
η (ξ, η) =

2πab

ε0

∞
∫

0

η

b2 + u
ρ
(

κ
2(u)

) du

∆(u)
.
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On the next step we evaluate components of the electrical

field Eξ , Eη for our charge distribution functions. Using

inverse transformation T−1 we can obtain Ex, Ey (elec-

trical field components in initial coordinate system). Af-

ter some evaluations one can determine (using Euler sub-

stitution t = ∆(u)/(a2 + u), u = b2 − a2t2/(t2 − 1),
t(0) = b/a, t(∞) = 1):

Eξ =
4πρ0
ε0

ab

a(a+ b)
ξ, Eη =

4πρ0
ε0

ab

b(a+ b)
η.

We will denote it as E0
ξ and E0

η . For the linear distribu-

tion in κ2 we obtain for the components of electrical field

correspondingly

Eξ,η = E0
ξ,η +∆Eξ,η, (2)

∆Eξ = −4πρ0
ε0

a1b1
a21 + b21

ξ

(

2a1 + b1
3a31

ξ2 +
1

a1b1
η2
)

,

∆Eη = −4πρ0
ε0

a1b1
a21 + b21

η

(

1

a1b1
ξ2 +

2b1 + a1
3b31

η2
)

.

The described approach can be used for all of our distribu-

tions. We obtain formulae similar to (2) with corresponding

expressions for ∆Eξ,η .

After rotation for Gauss distribution ρ3(x, y) =
ρ0 exp

(

−κ
2
)

we have κ
2 = ξ2/a2 + η2/b2 ≤ 1. Us-

ing the Euler substitution and integration on ξ, η we can

obtain
Eξ,η = E0

ξ,η +∆Eξ,η,

∆Eξ = −4πρ0
ε0

abξ

[

exp

(

ξ2 − η2

b2 − a2

)

− 1

]

×

×
∞
∑

k=1

[

χ1
k

(

η

ξ

)

−
(

b

a

)2k+1

χ1
k

(

ηa2

ξb2

)

]

,

∆Eη = −4πρ0
ε0

abξ

[

exp

(

η2 − η2

b2 − a2

)

− 1

]

×

×
∞
∑

k=1

[

χ2
k

(

η

ξ

)

−
(

b

a

)2k−1

χ2
k

(

ηa2

ξb2

)

]

,

where χ1
k(x) = ξ2k

k!(b2−a2)k+1

k
∑

j=0

(−1)k−jC
j

k

2k+1−4j x2j , χ2
k(x) =

= ξ2k

k!(b2−a2)k+1

k
∑

j=0

(−1)k−jC
j

k

2k−1−4j x2j . For distributions

ρ4(x, y) = ρ0(1 − 4κ4/9)Θ(1 − 4κ4/9) and ρ5(x, y) =
ρ cos2(κ2 π

4 )Θ(2 − κ2) rotation and scaling lead to

ρ5(ξ, η) = cos2(πκ2
5/2)Θ(1−κ2

5), κ
2
5 = ξ2/a25+η25/b

2
5 ≤

1, a5 =
√
2a, b5 =

√
2b we also obtain the corresponding

series.

We should note that any space charge distribution ρ(x, y)
with polynomial of n-order according κ

2 leads us to poly-

nomial ∆Eξ,η order 2n+ 1.

The above exemplified formulae can be essentially sim-

plified for a circular beam (a = b = R). For example, for

Cosine-like distribution we have:

∆Eξ =
2πρ0
ε0

ξ

(

2R2

π(ξ2 + η2)
sin

π(ξ2 + η2)

2R2
− 1

)

,

∆Eη =
2πρ0
ε0

η

(

2R2

π(ξ2 + η2)
sin

π(ξ2 + η2)

2R2
− 1

)

.

After returning to the initial coordinate system we can ob-

tain components Ex,y.

CONCLUSION – PARALLEL

CALCULATIONS FOR BEAM DYNAMICS

In the previous sections we have considered methods

which allow to evaluate a power series expansion for elec-

trical field. The form of these series allows us to use ma-

trix formalism for beam dynamics both in external (control)

and self-field generated by beam [5]. The presentation of

these fields in the same form allows us to use the method

predictor-corrector for beam dynamics evaluation [6] for

nonlinear fields also. The matrix presentation practically

of all objects allows us to parallelize necessary operations.

More over the necessary processors load it is not so essen-

tial as compared with parallelization of ”usual” approach

based on PIC or other similar methods. The computer sim-

ulation of some beam transport lines demonstrated neces-

sary effectiveness of the described approach. The compu-

tation process divides into several levels of parallelization

(parallelization tree) that allows us to constraint effective

programs using GPU graphic card TESLA S2050, OpenCL

and CUDA technologies [7].
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