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Abstract 
We present and discuss the properties of coherent 

electromagnetic fields of a very short, ultra-relativistic 
bunch, which travels in a rectangular vacuum chamber 
under the influence of a bending force of a magnet. The 
analysis is based on the results of a direct numerical 
solution of Maxwell’s equations together with Newton's 
equations. We use a new dispersion-free time-domain 
algorithm which employs a more efficient use of finite 
element mesh techniques and hence produces self-
consistent and stable solutions for very short bunches. We 
investigate the fine structure of the CSR fields. We also 
discuss coherent edge radiation. We present a clear 
picture of the field using the electric field lines 
constructed from the numerical solutions. This approach 
should be useful in the study of existing and future 
concepts of particle accelerators and ultrafast coherent 
light sources, where high peak currents and very short 
bunches are envisioned. 

 

INTRODUCTION 
The coherent synchrotron radiation (CSR) elds have a 

strong  action  on  the  beam  dynamics  of  very  short  
bunches,  which  are  moving  in  the  bends  of  all  kinds  of  
magnetic elements. They are responsible for additional 
energy loss and energy spread; micro bunching and beam 
emittance growth. These elds may bound the ef ciency 
of damping rings, electron-positron colliders and ultrafast 
coherent light sources, where high peak currents and very 
short bunches are envisioned. This is relevant to most 
high-brightness beam applications. On the other hand, 
these elds together with transition radiation elds can be 
used for beam diagnostics or even as a powerful source of 
THz radiation.  

A history of the study of CSR and a good collection of 
references can be found in [1]. Electromagnetic theory 
suggests several methods on how to numerically calculate 
CSR elds.  The  most  popular  method is  to  use  Lienard-
Wiechert potentials. Another approach is to numerically 
solve the approximate equations, which are a Schrodinger 
type equation. Some numerical algorithms and codes are 
described in [2]. We suggest that a direct solution of 
Maxwell’s equations together with Newton’s equations 
can describe the detailed structure of the CSR elds [3].  

Modeling ultrafast phenomena requires a special 
algorithm for solving the electromagnetic equations. This 
algorithm must be free of frequency dispersion which 
means that all propagating waves must have their natural 

phase velocity, completely independent of the simulation 
parameters like mesh size or time step. We suggest an 
implicit algorithm which does not have stability issues 
and employs a more ef cient use of nite element mesh 
techniques. This method can produce self-consistent 
stable solutions for very short bunches. We have already 
used this same approach long ago for wake eld 
calculations. An implicit, dispersion-free time-domain 
algorithm was used in the computer code designed in 
1976 for wake field dynamics studies at the Novosibirsk 
Electron-Positron Linear Collider VLEPP [4]. The 
algorithm details can be found in [5]. 

ELECTROMAGNETIC CSR 
SIMULATION  

We may suggest that a direct solution of Maxwell’s 
equations together with Newton’s equations can describe 
the detailed structure of the CSR elds, the fields 
generated by an ultra-relativistic bunch of charged 
particles moving in a metal vacuum chamber inside a 
bending magnet. Electromagnetic components E, B must 
satisfy the equations 
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A  charge  density  and  a  charge  current  must  satisfy  a  
continuity equation  
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A Newton force includes electromagnetic components 
and a bending magnetic field 
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There are a lot of nite-difference schemes, which nu-
merically solve Maxwell’s equations since the rst one 
was published in 1966 [6]. Most of them are so-called 
‘‘explicit’’ schemes, which means that the value of the 

eld at the new time step is calculated only by the eld 
values from the previous time step. Stability conditions 
for  these  schemes  do  not  allow a  time step  to  be  greater  
than or equal to a space (mesh) step. This limitation 
brings an additional troublesome effect for wavelengths 
that are comparable to a mesh step. We state that this 
effect works like a frequency dispersion media, which is 
‘‘hidden’’ in the nite-difference equation.   _________________________________________  
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Dispersion of the Explicit Schemes 
Let’s check the explicit scheme for the two-dimensional 

case. When the field components satisfy the equation: 
2 2 2
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likewise the explicit scheme will be 
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The stability condition easily comes from the Fourier 

analyses ~n i t i z i x
k e  and takes the form: 
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For stability reasons we need the frequency   to be real. 
This happens when the right part is less than one. To have 
stability for any longitudinal wave vector and 

transverse wave vector  we need the following 
condition to be fulfilled 
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Now let’s check the plane waves in free space. Without 
boundaries the plane waves must propagate at the speed 
of light. However the solution of the finite-difference 
equation shows that the propagation velocity depends 
upon the frequency. 
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This means that finite-difference equations contain 
something like a “hidden” dispersion media, which 
reveals itself at a wavelength comparable to the mesh 
size. A plot of propagation velocity as a function of 
frequency for different ratios of mesh steps to time steps 
is shown in Fig. 1.  
 

 
Figure  1:  Propagation  velocity  of  a  plane  wave  in  free  
space as a function of frequency for different ratios of 
mesh steps to time steps.  

This numerical dispersion disappears only when the time 
step becomes equal to the mesh step, but in this case the 
scheme is unstable. The effect of the numerical dispersion 
may be very dangerous; it can greatly disturb the result. It 
may develop a strong diffusion of an initially smooth field 
distribution and reveal high frequency oscillations. Fig. 2 
shows snap shots of a short wave bucket propagating in 
free space. This is the result of using the explicit scheme 
for  the  case  when the  length  of  a  bucket  is  equal  to  two 

mesh sizes. We can see that a wave bucket has distortion, 
modulation and diffusion: everything that comes from a 
dispersion media. The numerical dispersion distorts the 
bucket shape. If we want to have a better result using the 
explicit scheme we need to decrease the mesh size least 
five times. In the wake field simulations this effect leads 
to an unphysical result like “self-acceleration” of a bunch 
head, which violates energy conservation.  The explicit 
scheme ends up being not very good at calculating the 
wake fields of very short bunches.  
 

 
Figure 2: Snap shots of a propagating short wave 
bucket, calculated by an explicit scheme. 

 
Figure 3: Snap shots of a propagating short wave 
bucket, calculated by an implicit scheme. 

 

Implicit Scheme 
As we stated before there will be no numerical 

dispersion  if  the  time  is  equal  to  a  mesh  step.  We  can  
fulfil this condition by using the stable implicit scheme. 
In the implicit scheme for the calculation of the space 
derivatives we assume that the field at some time can be 
approximated by the average value of the field at a 
previous and a new time step. Of course the implicit 
algorithm is more complicated as it requires the solution 
of a system of equations. However, as we are interested in 
the waves that are propagating in the longitudinal 
direction we really only need a “partially” implicit 
scheme, which for our equation is the following:  
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The dispersion relation for this scheme is: 
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This equation shows that this scheme is stable in the case 
of equal mesh and time step c t z . Fig. 3 
demonstrates the effectiveness of this scheme. Now a 
wave bucket keeps the same shape. 

MAIN STRATEGY OF THE METHOD 
The main  strategy of  our  method is  to  use  an  implicit  

algorithm which does not have stability issues and 
employs a more efficient use of nite element mesh tech-
niques. The scheme may have dispersion in the transverse 
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direction. However, electromagnetic elds, which interact 
with a beam, propagate in the vacuum chamber at small 
angles, so the effect of dispersion in the transverse 
direction is less important than dispersion in the 
longitudinal direction. To employ the implicit scheme we 
transform Maxwell’s equations to second order equations.  

We also use the Fourier series expansion in the vertical 
direction. This approach allows to make 3D simulations 
on the assumption that there is no vertical motion of the 
beam and the vertical size of a beam chamber is constant. 
We also assume that the conductivity of the wall of the 
beam chamber is infinite.  

To decrease the amount of needed memory we use a 
traveling mesh. This is very important for simulations of 
real devices, like a bunch compressor where the distance 
between bends is tens of meters but the bunch length is of 
a micron size. Our mesh will move with the speed of light 
and we can definitely assume that the electromagnetic 
field in front of the bunch is zero; even if the bunch 
motion is not straight. Because a time delay or a 
longitudinal position delay due to the rotation in a 
bending magnet is very small, we really do not need more 
mesh  space  for  the  bunch.  In  our  case  a  traveling  mesh  
does not change the accuracy of the scheme or any 
conditions of stability.  

To simulate the real shape of a non-monochromatic 
bunch moving under the action of the electromagnetic 
fields including vertical magnetic fields of bending 
magnets, we will use an ensemble of particles. We will 
track each particle and average the current (particle 
velocities) over the mesh. The charge density distribution 
will be integrated using the continuity equation for charge 
and current. This will help to smooth out errors of particle 
transitions from one cell to another. Later we will show a 
charge distribution of a bunch rotated by the vertical 
magnetic field. We also assume that initially a bunch has 
a Gaussian distribution in all directions and is travelling 
with a speed very close to the speed of light. In this case 
we can easily calculate the initial distribution of the 
electromagnetic field of a bunch equal to the field of a 
bunch traveling in infinite metallic beam chamber. More 
details of this method can be found in [7-8].  

CSR FIELD DYNAMICS 

 Radiation in a Bend 
Let us first try to understand how a bunch field remakes 

itself when a bunch is rotated in a magnetic field.  We 
have calculated the electromagnetic field of a three 
dimensional Gaussian bunch that is initially moving along 
the  vacuum chamber  very  close  to  the  speed of  light.  At  
some point the bunch enters a vertical magnetic field of a 
bend. What happens after can be seen at Fig. 4, where 
snapshots of the electric field line distributions are shown 
at different time moments. In these plots the white boxes 
with the red arrows show a bunch contour and a bunch 
velocity direction.  Before entering a bend the bunch has 
only  a  transverse  field,  which  can  be  seen  as  a  set  of  
vertical lines. A new field that is generated in a bend is a 

set of ovals, which increase in size with a time.   We can 
outline two time periods of the field formation. The first 
period is when a bunch is still inside the region of its 
initial transverse field. The first two plots in Fig. 4 are 
related to this first period. The second period starts when 
the bunch is delayed so much that it is out of the region of 
the initial transverse field. The bunch is delayed because 
the velocity vector rotates and the longitudinal component 
becomes  smaller  and  smaller  than  the  speed  of  light,  
however field lines that are not very far away “don’t 
know” about this change and continue to propagate at the 
speed of light.  The last plot in Fig. 4 shows this situation. 
We may consider these fields to be the fields of the edge 
radiation in a bend. 

 
Figure  4:  Snapshots  of  electric  field  lines  of  a  bunch,  
which is moving in a magnetic field. White boxes show 
the bunch contour. Red arrows show the directions of the 
bunch velocity. 

A more detailed picture of the field lines is shown in Fig. 
5, where we also show the directions of the electric field 
lines by green arrows. If one examines this picture he can 
see that the upper field lines take the position of the lower 
lines and a part of the lower field lines take the position of 
the upper lines. However at the far ends the transverse 
field lines continue traveling in the same initial direction.  

 
Figure 5: Detailed structure of the field pattern.  

We can easily to explain such behavior if we present this 
field as a sum of two fields: .  The first part 
is the field of a dipole, which consists of two oppositely 
charged bunches. One bunch, which has a positive charge 
is the "real" one. This bunch is rotated in the magnetic 
field while the other bunch is a "virtual" one, which has 
an opposite charge and travels straight in the initial bunch 
direction. The second field inE  is  the  field  of  another  

"virtual", but positively charged bunch, which travels 
straight along the initial bunch direction. Naturally the 
virtual bunches together sum to zero. When we 
decompose the charges we decompose the fields and the 
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very complicated structure of the radiation field becomes 
simple. The decomposition of the field is shown in Fig. 6.  
 

Figure 6: Decomposition of the field of a bunch moving 
in a magnetic field (left plot) into two fields:  a field of a 
dipole (middle plot) and a field of a bunch moving 
straight in the initial direction (right plot). Red arrows 
show the directions of the bunch velocities. 
 

The interaction of the bunch with the dipole field  
continues  for  a  longer  time.  Fig.  7  shows  the  absolute  
value of the electric field on the horizontal plane in the 
vertical center of the vacuum chamber in consecutive 
time steps. The white oval shows the real bunch contour. 
When a dipole is created an electric field appears between 
a real bunch and a virtual bunch. This field increases in 
value and reaches a maximum when the bunches are 
completely separated and then decreases as the bunches 
move apart leaving the fields only around the bunches. 
The bunch acquires an energy loss while interacting with 
the electric dipole field. 

 

Figure 7: Absolute value of the electric field of a dipole.  

Continuing the study of the radiation process we 
investigate the dense set of field lines in Fig. 5, or the fine 
structure of the field in front of a bunch. This region is 
common with classical synchrotron radiation. The 
characteristic wavelength of the synchrotron radiation or 
an equivalent value of the bunch length for this relativistic 
factor is   

. . 3s r

R  

 
Figure  8:  Fine  structure  of  the  field  pattern  in  front  of  a  
bunch. The left plot shows field lines near a bunch. The 
right plot presents a picture from reference [9].  

We chose reference [9], as it supplies a picture of the field 
lines of a particle moving in a circle with a relativistic 
factor  of   =6.  The  equivalent  value  of  the  bunch length  

for this relativistic factor is very close to our bunch 
length. Fig. 8 shows this finite structure together with a 
plot from [9]. We can state that the region before a bunch 
is very close for both cases. 

Fields Acting Inside a Bunch 
   In order to study the fields acting on the particles 

inside  the  bunch  we  calculate  the  distribution  of  a  
collinear force ||  and a transverse force  as projections 
to the bunch velocity  

b b x
F J E F J E  

We have found some very exciting fine structure from 
this  force  acting  on  the  particles  in  the  bunch.  Fig.  9  
shows a distribution of forces in the horizontal plane in 
the vertical center of the vacuum chamber at three time 
moments.  The  left  three  vertical  plots  in  Fig.  9  show  a  
bunch charge distribution. The starting plots at each set 
are at the bottom when the bunch just enters the magnetic 
field. The red arrows show the direction of the bunch 
velocity. The middle three vertical plots show a transverse 
force. Again, the red arrow shows the direction of the 
force. The transverse force is the well-known space-
charge force, which probably is compensated by a 
magnetic force in the ultra-relativistic case.  The right 
three vertical plots show the collinear force, which is 
responsible for an energy gain or an energy loss. The red 
color corresponds to acceleration and energy gain and the 
blue color corresponds to deceleration or energy loss. The 
red arrows are collinear or anti-collinear with the bunch 
velocity.  

 
Figure 9: Bunch charge distributions, transverse forces 
and collinear forces on the horizontal plane in the vertical 
center of the vacuum chamber at three time moments.  

We see here that the forces on the bunch are very 
complicated. The particles, which are in the center of the 
bunch, in front of the bunch and at the end are 
accelerated, whereas the particles at the boundaries are 
decelerating. This means that a bunch gets an additional 
energy spread in the transverse direction. The total effect 
is deceleration and the bunch loses energy. The 
asymmetry  of  the  longitudinal  fields  can  also  be  seen  in  
Fig. 5, which shows the electric field line distributions. 
The bunch shape deformation due to the difference in the 
angular velocity along the radial position is usually small 
and can be seen only after some time; however the ultra-
small beam emittance can be effected. 

The integrated energy loss along the transverse 
direction as a function of the longitudinal coordinate is 
shown in Fig. 10 together with a bunch longitudinal 
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distribution.  One can see that the head of the bunch and 
the tail are accelerated, when the rest of the bunch is 
decelerated.  The shape of the energy loss distribution is 
compared with the analytical 1-D model [10] (green 
dashed line). We obtain a better agreement with the shape 
of the energy loss distribution for a larger bending radius 
and smaller bunch length. This comparison is shown at 
the right plot of Fig. 10. The transverse energy spread is 
smaller for a larger bending radius.  

 

 
Figure10: Integrated energy loss along the transverse 
direction as a function of the longitudinal coordinate for 
two values of bending radius.  

 Coherent Edge Radiation 
As we mentioned above, an ultra-relativistic bunch and 

CSR fields are moving together and interact for a long 
time. However one can see a field, which propagates 
straight ahead from the initial beam horizontal position. 
This field can be seen very well when the bunch gets a 
large horizontal displacement. Fig. 11 shows the 
distribution of the magnetic field on the horizontal plane 
in the vertical middle of the vacuum chamber. The large 
peak corresponds to the bunch field. A red arrow shows 
the initial bunch X-position and the direction of the bunch 
velocity. A blue arrow shows the direction of the bunch 
velocity at this time.  

  
Figure11: Coherent edge radiation. 

 
The right plot shows images of the coherent radiation in 

the form of transverse magnetic field distributions on the 
vertical planes of the vacuum chamber.  At first we see an 
image of edge radiation, then the image of synchrotron 
radiation and finally a bunch field image. The calculated 
images of the coherent edge radiation look very similar to 
the images, which we have seen on the YAG screen after 
the dump magnets, which bend the beam down at LCLS. 

  Fields in the Beam Chamber of an Accelerator 
As we mentioned before, the metal walls of a vacuum 

chamber of an accelerator change the distribution of the 

radiation fields, but the self-electromagnetic field of a 
bunch is also modified by the chamber geometry.  This 
field is much stronger than the radiation fields. Fig. 12 
shows the vertical electric field component inside the 
chamber when a bunch has left a magnet. The shape of 
the chamber follows the bunch trajectory. To see the 
radiation fields we need to magnify the amplitude 1000 
times.  When  a  bunch  changes  position  in  a  chamber,  its  
electromagnetic field also changes and the bunch must 
react back: loosing and then gaining the kinetic energy. In 
some cases this effect can be a much stronger radiation 
loss.  

 
Figure 12: Magnified vertical component of the electric 
field of a bunch moving in a vacuum chamber after 
having been bent by a magnet. 

CONCLUSIONS  
We have found that there is much a more interesting 

and detailed structure to the CSR fields, which have not 
been described by any previous study. A very important 
result is discovering the structure of the complicated 
collinear forces. A bunch will get an additional energy 
spread in the transverse direction from the collinear force. 
This immediately leads to emittance growth and 
decoherence that could limit FEL lasing for very short 
bunches. We will continue to study this effect. 
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