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Abstract
To the present time there has been developed a large

number of different codes for the particles beam dynamics
modeling. However, their precision, accuracy and reliabil-
ity of the numerical results are not sufficiently guaranteed
in the case of long-term evolution of particle beams in cir-
cular accelerators. Here we discuss convergence estimates
of the matrix presentation for Lie series. We also consider
some problems of the matrix formalism accuracy for con-
structing the evolution operator of the particle beam. In this
article there is paid a special attention to problems of sym-
plecticity and energy conservation for long time evolution
of particles beams.

INTRODUCTION
The well known Lie methods for nonlinear dynamics al-

low us to constructive evaluate the corresponding maps and
use them for accelerator physics [1]. But it should be note
that evaluation procedures of corresponding Lie maps is
enough time-consuming process. Besides, it is very diffi-
cult to evaluate corresponding procedures and estimate the
required accuracy of the corresponding evaluations. This
procedure is necessary for correct calculation for different
problems of accelerator physics, particularly for long time
beam evolution. Unfortunately the most popular methods
have not enough practical instruments for accuracy esti-
mates. The trend of accelerator physics leads us to neces-
sity to have a tool to assess not only the accuracy of compu-
tational procedures, but also to preserve certain qualitative
properties of the computational procedures (such as sym-
plecticity, energy conservation and so on). Usually these
problems are solved only in numerical mode up to some
order of integration steps O(hn). In the present paper we
demonstrate some analytical estimates for the correspond-
ing solutions using the matrix formalism for Lie approach
[2, 3]. We also consider some problems of the matrix for-
malism accuracy for constructing the evolution operator of
the particle beam.

THE ACCURATE EVALUATION OF
TRUNCATED LIE MAPS

Matrix Series Presentations for Lie Maps
In some previous papers we presented the matrix formal-

ism for Lie maps generated by ordinary differential equa-
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tions, which can be written in the the following form

dX

dt
= F(X, t) =

∞∑
k=1

Pk(t)X
[k], X0 = X(t0), (1)

where F = {F1, . . . , F2n}T and X[k] is a vec-
tor of all phase moments for the phase vector X
(dimX = 2n), for example, X = {x, px, y, py}T and

P1k
(

with matrix size dimP1k =
(
2n+k−1

k

))
are matrices

containing partial derivatives

{
P1k(t)

}
ij
=

1

k1! . . . k2n!

∂kFi(xj , t)

∂xk1
1 . . . ∂xk2n

n

∣∣∣∣∣
x1=...=x2n=0

.

The eq. (1) generates the Lie operator [1] in according the
following equality

LF = F∗(X, t)
∂

∂X
=

∞∑
k=1

(
X[k]

)T
PT
1k

∂

∂X
=

∞∑
k=1

LFk
.

So, for corresponding Lie map [1] we can write

M (t|t0;LF) = T exp

t∫
t0

LF(X, τ)dτ =

= Texp
∞∑
k=1

t∫
t0

LFk
dτ = M

(
t|t0;

t∑
t0

LFk

)
=

=

∞∏
k=1

M

(
t|t0;

t∑
t0

LGk

)
, (2)

where the symbol ”T” denotes the so called chronological
ordering exponent Lie operator [3] (or the Dyson operator).
Here k indicates the order of corresponding homogeneous
polynomials. Evaluation of (2) can be realized in the frame
of two following approaches:

1. The Magnuss representation for chronological expo-
nent operators [3, 4].

2. The Zassenhaus formula for homogeneous polynomi-
als Gk, k ≥ 1 calculation). Using these approaches we can
write some symbolic formulas for Lie map M evaluation.
For example, if we introduce the following notations [3]

Pk 1
m =

k∏
j=1

G⊕((j−1)(m−1)+1)
m (here ⊕ denotes the Kro-

necker sum), then we have the following equality

exp (LGm) ◦X = X+
∞∑
k=1

Pk 1
m

k!
X[k(m−1)+1].
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Similar formulae allow us to write the following formulae

M≤3 ◦X = R11

(
X+

3∑
m=2

∞∑
k=1

Pk1
m

k!
X[k(m−1)+1]+

+
∞∑
l=1

∞∑
k=1

1

k!l!
Pkl
2 Pl (k+1)

3 X[2l+k+1]

)
, (3)

where R11 is a fundamental matrix for linear approxima-
tion for motion equations. The formulae similar to (3) al-
low us to evaluate the necessary maps constructively and
use them up to required order. Here we should mention
additionally that the corresponding matrices Pk1

m in sym-
bolic or numerical modes up to necessary order on phase
vector X.

The formulae similar to (3) allow us to evaluate up to
necessary order corresponding matrix expansion for Lie
maps. But for many beam physics problems it is very
important to conserve some properties, for example the
symplecticity property for hamiltonian systems. The sym-
plecticity property imposes special conditions on the corre-
sponding matrices, which have the form of linear algebraic
equations [3]. It is necessary to emphasize that these re-
strictions of the corresponding matrices can not influence
on the accuracy estimations.

The Problems of Accuracy Evaluations
The Lie Map. The above pointed methods of Lie maps

evaluation will guarantee necessary convergence. As an ex-
ample, we can give some estimates for convergence of Lie
map evaluation in accordance with Magnus presentation of
Lie map. According to this approach the chronological pre-
sentation (2) can written in the form of ordinary exponen-
tial operator [4]:

M(t|t0) = expW(t|t0;A), (4)

where W(t|t0;A) – is a new vector field, generated by
”old” vector field A = LF. Differentiation of eq. (4) gives
us

dW(t|t0)
dt

=

[
A(t) ◦ W(t|t0)

1− exp (−W(t|t0))

]
. (5)

Equation (5) can be written as a series:

dW(t|t0)
dt

=
∑
k≥0

αk

[
A ◦Wk

]
= A+

1

2
{A,W}+

+
1

12

[
A ◦W2

]
+ . . . , (6)

where α2k+1 = 0, k ≥ 1, α0 = 1, α1 = 1/2, α2k =
(−1)k−1B2k/(2k)! , B2k – Bernoulli numbers. We can
rewrite eq. (6) in the following integral equation:

W(t|t0) =
∑
k≥0

αk

t∫
t0

[
A(τ) ◦Wk(τ |t0)

]
dτ. (7)

Let be W1(t|t0) =
∫ t

t0
A(τ)dτ , then the solution of (7) can

be written using the the method of successive approxima-
tions:

Wk(t|t0) =
t∫

t0

A(τ)dτ +
∑
l≥2

t∫
t0

[
A ◦W l

k−1(τ |t0)
]
dτ,

(8)
where k ≥ 2, t ∈ [t0, T1] ⊂ [t0, T ] ⊂ R1.

We introduce the multiplicative norm, which coordi-
nates with functional dependence elements on t ∈ [t0, T2],
t0 ≤ T2 ≤ T1, that is ∥A ◦ B∥Φ ≤ ∥A∥Φ∥B∥Φ ∀ A,B ∈
LA[X], where the index “Φ” means a norm in the corre-
sponding functional space. Let be, for example, A(t) – a
summable function on the interval [t0, T2], then we can de-
fine A(t) =

∫ t

t0
∥A(τ)∥dτ , ∀ t ∈ [t0, T2], where ∥ · ∥ – an

arbitrary multiplicative norm in LA[X] and A(t) – a scalar
nonnegative continuous function ∀ t ∈ [t0, T2]. According
to the step-by-step method we should prove the sequence
convergence. For these aim we use recurrent relation (8)
and receive for W:

W(t|t0) =
t∫

t0

A(τ)dτ + α1

t∫
t0

A(τ),

τ∫
t0

A(τ ′)

 dτ+

+α2
1

t∫
t0

A(τ),

τ∫
t0

A(τ ′),

τ ′∫
t0

A(τ ′′)dτ ′′

 dτ ′

 dτ + . . .

Let introduce the notation W =
∑
k≥0

Wk, where Wk – a

group of terms of series comprising k nested Lie brackets,
then we obtain the following estimation

∥Wk(t|t0)∥ ≤ A(t) (2A(t))
k
Ck, k ≥ 0, (9)

where Ck satisfies to following recurrent relations:
C2l = α2l + C2l−2C2l−4, C2l+1 = α2l + C3C2l−1, l ≥ 2,
C0 = 1, C1 = 1, C2 = α2

1 + |α1|, C3 = α3
1 + 2|α1|. The

connection of coefficients α2k with Bernoulli numbers
leads us to the estimation

|α2m| ≤ 2

(2π)2m

∑
k≥1

1

22k
<

4

(2π)2m
.

Introducing the following notation M =
∫ T2

t0
A(τ)dτ , one

can estimate ∥Wk∥L1 ≤ 2kMk+1Ck under sufficiently
great k. The majorant series with general term 2kMk+1Ck

will be converge in according to limit test for convergence
by D’Alember, if there is satisfied the inequality

lim
k→∞

2k+1Mk+2Ck+1

2kMk+1Ck
= q < 1.

Let be (for definiteness) k = 2l, then

q = lim
l→∞

2MC2l+1

C2l
= lim

l→∞

2M(α2l + C3C2l−1)

α2l + C2l−2C2l−4
= 2M.

TUSCC2 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

94C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

05 Computer Modeling of High Current Effects



So the majorant series converges under M < 1/2, and the
series (7) is a absolutely convergent series. So the equation
(5) has a continuous-time solution on the interval [t0, T2].
From here follows the theorem about absolutely conver-
gence of the series (8).

The Ordinary Differential Equations. It is often the
beam dynamics problems are described by the Cauchy
problem

dX

dt
= G(X), X(t0) = X0,

where G = {G1, . . . , Gn}T is an analytical function for
any X ∈ X1 ⊂ R2n, 0 ∈ X1 and G(0) = 0. Then in a
neighborhood of zero X = 0 we have

G(X) =
∞∑
k=0

AkX
[k], (10)

From the convergence of series (10) follows

|(Ak)
i| ≤ Mi

(r)k
, (r)k = rk1

1 . . . rkn
n , (11)

where |xi| ≤ ri, i = 1, n and ri guarantees embedding
Pr ⊂ X1 ⊂ Rn. Here (Ak)

i – i-th row of matrix Ak and
Mi are some positive constants. Using (11) one can write
the following estimations:

|Gi(X)| =

∣∣∣∣∣
∞∑
k=0

(Ak)
i
X[k]

∣∣∣∣∣ ≤ Mi

∞∑
k=0

(x
r

)k
,

where (x/r)
k
=
∏n

i=1 (xi/ri)
ki . Then one can obtain the

following estimations ∀ i = 1, n:

∥Gi(X)∥ ≤ Mm
G

1− (x/r)m
, rm = min

i=1,n
ri, M

m
G = max

i=1,n
Mi.

Let xm satisfies inequalities |xi| ≤ xm < rm, then
∥G(X)∥ ≤ Mm

G / (1− xm/rm)
n

= Gm(xm), where
Gm(xm) is a function of single variable xm, defining
the n-dimensional cube Qn ⊂ Pr

n ⊂ R1 : |xi| ≤
xm. Above mentioned computations allow us to estimate
Gi(X)∂/∂xi. Let define a Lie operator

LG =
n∑

i=1

Gi(X)
∂

∂xi
=

(
G(X),

∂

∂X

)
= G∗(X)

∂

∂X
,

and exp
(
tLG(X)

)
◦ F(X) =

∞∑
k=0

(tk/k!)Lk
G(X) ◦ F(X),

then after some evaluations one can derive
∞∑
k=0

|t|k

k!

∥∥Lk
G ◦ F(X)

∥∥ ≤
∞∑
k=0

|t|k

k!
(Lm)

k ◦ Fm(xm),

where ∥X∥ ≤ xm < rm. Finally we can obtain

∞∑
k=0

|t|k

k!

∥∥Lk
G ◦ F(X)

∥∥≤ Mm
G

(1− xm/rm)
n×

×
∞∑
k=0

αk

(
|t| Mm

F (n+ 1)

rm (1− xm/rm)
(n+1)

)k

, (12)

where αk ≤
((

1− 1
n+1

)n+1
)k

, and we obtain a conver-

gent series, if there

|t| < rm (1− xm/rm)
n+1

nMm
F (n/n+ 1)

n <
rm (1− xm/rm)

n+1
e

nMm
F

.

So, the series (12) converges absolutely, if there are the next
inequalities

|t| < rm (1− xm/rm)
n+1

nMm
F

(
1 +

1

n+ 1

)n

,

∥X∥ ≤ xm < rm.

The above mentioned formulae demonstrate the basic re-
strictions on the parameters of the problem. But on the
practice it will be more practically to use the following for-
mula for convergence estimation:

∥X−XN∥ ≤
∞∑

k=N+1

k rkLk+1M

(k − 1)!
Jk(L,M), (13)

where N is the truncation error for the given approxima-
tion order, r is the region in the phase space under study
(∥X0∥ ≤ r) and h – an integration step. In the estimation
(13) we introduce the following definitions:

L = sup
t,τ∈T

∥R11(t, τ)∥, sup
t,τ∈T

∥Rjj(t, τ)∥ ≤ jLj ,

M =
∫
T
φ(t)dt, where ∥Pij(t)∥ ≤ φ(t)/(j − 1)!, and

Ji(L,M) =


i∏

k=3

{
(k−1)Lk−1M

(k−2)! + 1
}
, i ≥ 3,

1, i = 2

CONCLUSION
The above described estimations allow a researcher to

evaluate truncated matrix expansion up to necessary order.
If it is necessary, the corresponding matrices can be cor-
rected for symplecticity property guarantee without loss of
accuracy.
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