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Abstract

The ponderomotive force approximation enables effi-

cient modeling of laser-plasma accelerators. It allows sim-

ulation in cylindrical geometry which captures relevant 3D

physics at 2D computational cost. INF&RNO (INtegrated

Fluid & paRticle simulatioN cOde) is an efficient 2D cylin-

drical code based on the envelope model for the laser, a PIC

or fluid description for the plasma, and the ponderomotive

force approximation to describe the effect of the laser pulse

on the plasma. These and other features, such as an im-

proved laser envelope solver, a dynamical resampling of

the phase space distribution to reduce on-axis noise, and

a Lorentz boosted frame modeling capability, allow for a

speedup of several orders of magnitude compared to stan-

dard (explicit) full PIC simulations while still retaining

physical fidelity. The code has been benchmarked against

analytical solutions and 3D PIC simulations. In this paper

we report on the latest developments of the code, focusing

in particular on the improved laser envelope solver, and we

discuss its performance.

INTRODUCTION

Numerical modeling of a laser-plasma accelerator (LPA)

[1], where a short and intense laser pulse interacts with

an underdense plasma over distances ranging from a few

millimeters/centimeters (yielding ∼ 0.1/1 GeV electron en-

ergy [2, 3]) up to several tens of centimeters (as in the

BErkeley Lab Laser Accelerator experiment (BELLA) [4]

where ∼ 10 GeV electrons are expected), is a compu-

tationally challenging task. A 3D “full” (i.e., where the

fast oscillations of the plasma electrons in the laser field

are taken into account) PIC simulation requires 104 − 105

CPU hours using today’s supercomputers for a millimeter-

scale plasma and ∼ 106 CPU hours for a centimeter-scale

plasma. The simulation of a ∼ 10 GeV stage as required by

BELLA would necessitate several tens of millions of CPU

hours and are practically impossible to perform with stan-

dard simulation tools and today’s computational resources.

However, numerical modeling plays a central role in the

understanding and optimization of LPAs. Simulations are

required since the physics of the laser-plasma interaction is

highly nonlinear and, consequently, analytical solutions are

lacking.

Two approaches have been proposed to overcome these

limitations and allow for the simulation of multi-GeV LPA
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stages: i. use reduced models [5, 6, 7]; ii. run the sim-

ulation in an optimal Lorentz boosted frame (LBF) [8]

instead of in the laboratory frame. Codes based on re-

duced models allow for a significant speedup compared to

full PIC simulations either because of dimensionality re-

duction (e.g., 2D cylindrical instead of full 3D cartesian)

or because of approximations in the physical description

of the system (e.g., quasi-static instead of fully dynamic

plasma response, ponderomotive approximation instead of

full Lorenz force, etc.). Even if they may lack important

elements of the physics (e.g., a quasi-static code can not

describe self-injection), their use has been proven to be

successful in several relevant scenarios [5, 9, 10, 11]. The

use of an LBF has been strongly pursued by several groups

[12, 13, 14, 15]. The advantage of running a simulation

in an LBF relies on the fact that, if backward propagating

waves (e.g., Raman backscattering) can be neglected, and

this is generally true for LPAs, then it has been shown [8]

that the unbalance between the maximum and minimum

physical scales involved in a simulation, which contribute

to set the computational complexity of the problem, is not

invariant under Lorentz transformation. It turns out that, in

general, the laboratory frame is not the optimal choice to

run the simulation, while running it in a boosted frame can

considerably reduce the scale unbalance, shortening (also

by several orders of magnitude) the simulation length.

The INF&RNO computational framework [6, 16], is a 2D

cylindrical (r − z) code that adopts an envelope model

for the laser pulse and makes use of the (time-averaged)

ponderomotive force approximation to describe the inter-

action of the laser pulse with the plasma. The plasma can

be modeled using either a PIC or a fluid description. Both

PIC and fluid modalities are integrated in the same compu-

tational framework allowing for staged simulations (e.g.,
PIC for injection and fluid for acceleration). The adop-

tion of the cylindrical geometry allows the description of

3D physics (laser evolution, electromagnetic field struc-

ture) at 2D computational cost. The code features an im-

proved laser envelope solver which enables an accurate de-

scription of the laser pulse evolution deep into depletion

even at a reasonably low resolution. This new algorithm

overcomes some of the limitations reported in other imple-

mentations of the laser envelope solver [7]. For the PIC

part, a dynamical resampling of the phase space distribu-

tion is implemented in order to reduce the on-axis noise

which affects, in some cases, 2D axisymmetric codes when

the computational grid is loaded with a constant number

of particles per cell. Finally, an LBF modeling capability

has been introduced within the (noiseless) fluid framework.

The employment of the LBF by the user is transparent since
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a set of “wrapper” routines take care of all the necessary

data transformations between the laboratory frame and the

LBF, where the simulation is performed, during initializa-

tion and output dumps. The code has been validated and

benchmarked against analytical solutions and other codes

(e.g., fully 3D PIC [13]). Benchmark results can be found

in [6]. In this paper we provide a general overview of the

features and performance of the code. With INF&RNO, de-

tailed simulations of a ∼10 GeV LPA stage becomes fea-

sible in a few hours or days, depending on the particular

simulation settings, on small clusters with (at most) a few

hundred CPUs.

OVERVIEW OF THE CODE

Physical Model and Basic Equations
The code INF&RNO works in 2D cylindrical (r − z)

geometry and adopts non-dimensional comoving variables

defined as ξ = kp(z−ct) (longitudinal) and ρ = kpr (trans-

verse), where kp = ωp/c, ωp is the plasma frequency cor-

responding to the chosen reference density n0, and c is the

speed of light. The time is also rescaled with 1/ωp, that

is τ = ωpt. Working in 2D cylindrical geometry, unlike

the 2D Cartesian, has the advantage that laser evolution

(e.g., self-focusing and diffraction) or wakefield structure

are the same as in 3D, if non-axisymmetric features can be

neglected, but the computational cost for the simulations is

significantly lower (approximately 2 orders of magnitudes)

compared to 3D runs.

Denoting by a⊥ = eA⊥/mc2 the normalized vector po-

tential of the laser, the corresponding laser envelope â is de-

fined by a⊥ = â(ξ,ρ)
2 ei(k0/kp)ξ+c.c. The envelope evolves

according to [1](
∇2

⊥ + 2i
k0
kp

∂

∂τ
+ 2

∂2

∂ξ∂τ
− ∂2

∂τ2

)
â =

δ

γfluid

â , (1)

where 2π/k0 is the central laser wavelength, δ = n/n0

is the (normalized) electron plasma density and γfluid is the

relativistic factor associated with the local plasma fluid ve-

locity. We notice that in the derivation of Eq. 1 all high-

frequency contributions from the plasma have been ne-

glected [1].

The fully time-explicit electromagnetic wakefield gener-

ated behind the laser is described by the fields Ez, Er, Bφ

(normalized to E0 = mcωp/e, where m and e are respec-

tively mass and charge of the electron). The wakefield

evolves according to Ampère-Maxwell laws which read

∂Ez

∂τ
=

∂Ez

∂ξ
+

1

ρ

∂(ρBφ)

∂ρ
− Jz,

∂Er

∂τ
=

∂(Er −Bφ)

∂ξ
− Jr, (2)

∂Bφ

∂τ
= −∂(Er −Bφ)

∂ξ
+

∂Ez

∂ρ
,

where (Jz, Jr) are the components of the (normalized) cur-

rent density. The background plasma can be modeled us-

ing either a PIC or a fluid description and the laser-plasma

coupling is described via the ponderomotive approximation

[1]. For the PIC description the equations are⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dξj
dτ =

uz,j

γj
− 1 ≡ βz,j − 1

dρj

dτ =
ur,j

γj
≡ βr,j

duz,j

dτ = −∂γj

∂ξ |j − Ez,j − βr,jBφ,j
dur,j

dτ = −∂γj

∂ρ |j − Er,j + βz,jBφ,j

γj ≡ (1 + |â|2/2 + u2
z,j + u2

r,j)
1/2 ,

(3)

where (ξj , ρj , uz,j , ur,j) are the phase-space coordinates

(position and normalized momentum) of the j−th numer-

ical particle representing one of the characteristics of the

Vlasov equation for the plasma. A PIC description is also

adopted to model externally injected particle beams. In the

fluid description for the plasma, the electron density, δ, and

momentum, u = (uz, ur), evolve according to⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂δ
∂τ = ∂δ

∂ξ −∇ ·
(

u
γfluid

δ
)

∂(δuj)
∂τ =

∂(δuj)
∂ξ −∇ ·

(
�βδuj

)
+ δ

[
−(E+ u

γfluid
×B)− 1

2γfluid
∇ |â|2

2

]
j
, j = z, r

γfluid ≡ √
1 + |â|2/2 + u2

z + u2
r .

(4)

The PIC and fluid modalities are integrated in the same

computational framework, enabling an easy switch from

one description to the other (combined simulations).

Recently, besides the time-explicit modality, a quasi-

static, linear, fluid modality has been included in the

INF&RNO framework. The quasi-static approximation as-

sumes ∂/∂τ = 0 in the equations for the wakefield and the

plasma, explicit time evolution is only retained in the equa-

tions for the driver (particle or laser beam). This modality

will allow for fast simulations of the interaction of a (long)

particle beam in an overdense plasma [i.e., where the beam

density is (much) smaller than the background plasma den-

sity] [17]. Finally, the code also features a 1D fluid modal-

ity (which can be either time-explicit or quasi-static) that

can be used for quick/preliminary parameter scan.

Numerical Aspects and Features of the Code
In INF&RNO all the fields are discretized into the same

2D mesh (no staggering is adopted). Longitudinal deriva-

tives are computed using a second-order finite difference

upwind scheme, namely (∂ξf)i,j = (−3fi,j + 4fi+1,j −
fi+2,j)/(2Δξ), where fi,j is the field value at the (i, j)
node and Δξ the longitudinal cell size. Radial derivatives

are computed using a standard centered second-order ac-

curate scheme. No singularity exists at the r = 0 bound-

ary, and from symmetry properties we have, for instance,

∂ρEz|ρ=0 = Er|ρ=0 = Bφ|ρ=0 = 0 and limρ→0 Bφ/ρ =
∂Bφ/∂ρ|ρ=0. Second and fourth order Runge-Kutta inte-

grators (RK2/RK4) are available for fluid plasma quantities

and wakefield evolution while plasma particles and exter-

nally injected bunches can be pushed with either RK4 or

the standard Boris pusher [18].
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The laser envelope is updated in time solving Eq. 1 using

a second order Crank-Nicolson scheme [16]. More details

on the laser envelope solver are given in the next section.

In the PIC modality force interpolation, charge and cur-

rent deposition are performed using quadratic shape func-

tions. Compact low-pass digital filters [19] and standard bi-

nomial filters (with compensator) are available for field and

current smoothing. The user has large freedom in loading

numerical particles over the computational domain (the nu-

merical particle distribution is controlled by a simple user-

defined routine) and this freedom can be used to selectively

provide a better sampling of the plasma phase space dis-

tribution within the dynamically interesting zones without

greatly increasing the overall number of simulated particles

[20]. When the computational grid is loaded with a con-

stant number of particles per cell, particles loaded at large

radii, because of the cylindrical symmetry, carry generally

more charge than particles loaded on-axis. If/when these

“heavier” particles approach the r = 0 axis, they may in-

duce “spikes” in density and currents, increasing the noise

level in the fields. These detrimental effects can be par-

tially mitigated via dynamical particle splitting of the high

charge particles approaching the axis. Details on the im-

plementation of this technique to resample the phase space

distribution are discussed in [6].
An LBF modeling capability is available within the

INF&RNO/fluid framework. The extension of this capabil-

ity to the INF&RNO/PIC modality is currently underway.

In order to enable LBF simulations in a code based on a

laser envelope model, the evolution equation for the laser

envelope has to be Lorentz invariant. In the LHS of Eq. 1

we retain the second order time derivative (full wave op-

erator), ensuring exact invariance of this equation under

Lorentz transformation [16]. This simulation modality is

transparent for the user which only has to set the velocity

of the boosted frame (i.e., γLBF) and initialize the system

as he/she would be in the standard laboratory frame (LF).

A set of “wrapper” functions automatically perform all the

necessary operations to set properly the physical parame-

ter [laser, plasma, externally injected bunch(es), etc.] and

the numerical ones (grid settings) in the LBF. The swiping

plane technique [15] is used to initialize the simulation in

the LBF and to reconstruct the output data in the LF at a

fixed laboratory time. In all the tests performed to validate

the implementation of the LBF in the fluid framework, no

evidence of the numerical instability which usually affects

PIC simulations in the LBF when γLBF is large has been

observed [21]. The theoretical speedup for an LPA sim-

ulation in the LBF and the optimal boost velocity (γopt
LBF )

have been computed in [15]. It is found that, for a typi-

cal LPA experiment, γopt
LBF � γw, where γw is the relativis-

tic factor of the wake traveling behind the laser driver. A

∼10 GeV stage requires n0 ∼ 1017 e/cm3, which implies

γopt
LBF � γw ∼ 100. However, in our case, the maximum

value for γLBF (and so the maximum speedup) is more likely

to be limited by the validity of Eq. 1 in the LBF. In fact, the

envelope approximation relies on a time scale separation
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Figure 1: Evolution of the laser envelope in a 1D simu-

lation with parameters a0 = 1.5, k0/kp = 20, Lrms = 1
[a2(ξ, τ = 0) = a20 exp(−ξ2/2L2

rms)]. The dashed black

lines refer to τ = 0 (right) and τ = 1500 (left). For

τ = 1500 then real (red) and imaginary (blue) part of â
are also shown.

between the fast laser oscillations and the slowly evolv-

ing envelope. Due to the redshift of the laser light in the

boosted frame, the fulfillment of the time scale separation

condition becomes more difficult to achieve the higher is

γLBF. We found that, for the ∼ 10 GeV stage, the maximum

acceptable value for γLBF is around 30 − 40. For higher

values of γLBF the simulation results start to deviate signifi-

cantly from those obtained in the LF.

The code has been parallelized with MPI. Paralleliza-

tion is achieved through 1D longitudinal domain decompo-

sition. Studies to improve the parallel scalability are cur-

rently under consideration.

IMPROVED LASER ENVELOPE SOLVER
In a code based on a laser envelope model that adopts the

ponderomotive approximation to describe the laser-matter

interaction, there is no need, in principle, to resolve the

laser wavelength and usually, for a resonant pulse [1], the

characteristic length of the pulse (e.g., the the r.m.s pulse

length, Lrms) is the smallest relevant scale of interest. How-

ever, during propagation in the plasma, as a consequence of

laser-pulse redshifting, structures smaller than Lrms arise in

the laser envelope [22, 7, 23]. In Fig. 1, we show, as an

example, the evolution of the laser envelope from τ = 0
to τ = 1500 in a 1D simulation with a0 = 1.5, k0/kp =
20, Lrms = 1 [we assume, initially, a laser pulse of the form

a2(ξ, τ = 0) = a20 exp(−ξ2/2L2
rms)]. The red and blue

lines in Fig. 1 are, respectively, the real (�[â]) and imag-

inary (�[â]) part of the laser envelope at τ = 1500. The

presence, at later times, of structures smaller than Lrms (in

the form of oscillations) in �[â] and �[â] (but also, to a mi-

nor extent, in the laser envelope |â|) is evident. This has to

be taken into account when designing a numerical scheme

for the laser envelope evolution equation, or when choosing

the (longitudinal) resolution to be used in the simulation.
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In INF&RNO, the evolution equation for the laser enve-

lope, Eq. 1, is discretized in time using a Crank-Nicholson

scheme which reads

− ân+1 − 2ân + ân−1

Δ2
τ

+ 2

[
i
k0
kp

+
∂

∂ξ

](
ân+1 − ân−1

2Δτ

)
= (5)

− ∇2
⊥

(
ân+1 + ân−1

2

)
+

δn

γn
fluid

ân+1 + ân−1

2
,

where âk = â(ξ, ρ; kΔτ ). By using Eq. 5, knowing ân

and ân−1, we can evaluate ân+1.The first term in Eq. 5

corresponds to the (discretized) second order time deriva-

tive (∂2/∂τ2) on the LHS of Eq. 1. Including this term,

besides providing exact Lorentz invariance of the wave op-

erator as required by the LBF modeling capability, it al-

lows also for a correct description of backwards propa-

gating waves and a better modeling of strongly depleted

stages [23]. As for the spatial discretization, the transverse

Laplacian operator, ∇2
⊥, takes the usual discrete form (for

cylindrical coordinates) described in [18]. Extra care has

to be put in the discrete representation of the longitudinal

derivative ∂/∂ξ. In fact, when the small structures in â
develop and are not well resolved (this is the case for de-

pleted laser pulses if the longitudinal resolution is not suf-

ficiently high), a not optimal discrete form of the opera-

tor ∂/∂ξ might introduce significant numerical errors and

prevent a correct description of the laser evolution. This

issue is addressed in INF&RNO by means of a technique

that involves the polar form for the representation of the

complex field â(ξ), namely â(polar)(ξ) = a(ξ) exp[iθ(ξ)],
where a = |â| = (�[â]2 + �[â]2)1/2 and θ = arg(â),
instead of the standard Cartesian representation. The po-

lar amplitude and phase a(ξ) and θ(ξ), are reasonably well

behaved and less prone to show an oscillatory behavior or

significant variability over small scales compared to �[â]
or �[â]. Evaluating the longitudinal derivative of the laser

envelope field using the polar form has then some numeri-

cal advantage. More specifically, starting from the identity

â = â e−iθeiθ, and applying the ∂/∂ξ operator, we get

∂â

∂ξ
=

∂

∂ξ

(
â e−iθeiθ

)
=

∂

∂ξ

(
âe−iθ

)
eiθ + iâ

∂θ

∂ξ
, (6)

where both âe−iθ ≡ a(ξ) and θ(ξ) are, as previously de-

scribed, reasonably smooth function, so we do not expect

the numerical differentiation to introduce a significant er-

ror in the evaluation of their derivatives. We notice that in

Eq. 5 the operator ∂/∂ξ acts on ân−1 and ân+1 (the un-

known). To simplify the algorithm (retrieving the phase

is a time consuming operation) we use the phase of ân in

evaluating both ∂ân+1/∂ξ and ∂ân−1/∂ξ. The error asso-

ciated with this approximation is small in all relevant cases

analyzed.

An example (in 1D) of the performance of the laser en-

velope solver implemented in INF&RNO is shown in Fig. 2.

In the simulation presented we consider the propagation

of a short and intense laser pulse a0 = 1, Lrms = 1 in

a uniform plasma such that k0/kp = 100 (parameters of

interest for a ∼ 10 GeV LPA stage). In Fig. 2 (a) we

show the behavior of the laser energy as a function of

the propagation distance (normalized to the pump deple-

tion length which, for a resonant pulse, can be estimated

as Lpd ∼ λ3
p/λ

2
0 ∼ 80 cm, λp and λ0 being respec-

tively the plasma wavelength and the central laser wave-

length) computed with different numerical schemes. The

red dashed line is the result obtained with the full PIC code

ALaDyn at high resolution, and can be considered ”exact”

for practical purposes. The black lines refer to results ob-

tained with envelope code without the polar representation

for the envelope field (“standard” solver). Different reso-

lutions are considered, namely Lrms/Δξ = 30, 100, 1000
(see figure caption for detail). We notice that only at very

high resolution the envelope results converge to the PIC re-

sult. The blue dots refer to the result computed with the

envelope solver implemented in INF&RNO. Even at mod-

erately low resolution, Lrms/Δξ = 30, the agreement with

the PIC result is excellent also for a depleted laser pulse.

Doubling the longitudinal resolution in this case (plot not

shown) provides results in agreement with the PIC down to

Lpropag/Lpd � 1. In Fig. 2 (b) we show lineouts of the lon-

gitudinal wakefield, Ez , after a propagation distance corre-

sponding to 80% of the pump depletion length for the same

numerical schemes presented before. Also in this case

results obtained with the INF&RNO laser envelope model

at (moderately) low resolution are in excellent agreement

with the PIC simulation while, for the same resolution, re-

sults obtained with the “standard” solver show a significant

(unacceptable) damping of the wakefield.

DISCUSSION

The computational framework INF&RNO is a 2D cylin-

drical, envelope, ponderomotive, PIC/fluid code designed

to efficiently model LPAs. It features, among the others,

an improved laser envelope solver, a technique to dynami-

cally resample the phase space distribution aimed at reduc-

ing on-axis noise in the fields, and an LBF modeling capa-

bility. Compared to standard (explicit) full 3D PIC simu-

lations it allows for a speedup of several orders of magni-

tude (between 2 and 5, depending on the particular prob-

lem and numerical setting) in the calculation time. In [16]

it has been shown that an INF&RNO/fluid simulation of a

10 GeV stage in the quasi-linear regime, as in the BELLA

experiment, requires only ∼ 30 CPU hours using the LBF

modality with γLBF = 12. This corresponds to a speedup

of approximately 5 orders of magnitude in the simulation

time compared to standard simulation tools. As a second

example we consider an INF&RNO/PIC simulation (in the

laboratory frame) of a ∼ 10 GeV stage in the bubble regime

where we model both self-injection and acceleration of the

electron beam. Compared to the quasi-linear design the ac-

celeration distance is shorter in this case (∼ 10 cm for the

bubble regime, ∼ 80 cm for the quasi-linear regime) but the

Proceedings of ICAP2012, Rostock-Warnemünde, Germany THAAI2

07 Plasma Accelerator Schemes

ISBN 978-3-95450-116-8

209 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



0.0 0.2 0.4 0.6 0.8 1.0
0.2

0.4

0.6

0.8

1.0

propag. distance, Lpropag/Lpd

n
o

rm
al

iz
ed

la
se

r
en

er
g

y,
E

la
se

r

· · · 1D PIC
λ0/Δξ = 40

— “standard”
envelpe solver

• INF&RNO solver
Lrms/Δξ = 30

Lrms
Δξ

= 30

Lrms
Δξ

= 100

Lrms
Δξ

= 1000

(a)

-12 -8 -4  0  4
-0.50

-0.25

0.00

0.25

0.50

longitudinal position, ξ

n
o

rm
al

iz
ed

lo
n

g
.

w
ak

efi
el

d
,
E

z
(ξ
)

— 1D PIC
λ0/Δξ = 40

— “standard”
envelpe solver

• INF&RNO solver
Lrms/Δξ = 30

Lrms
Δξ

= 30

Lrms
Δξ

= 100

Lrms
Δξ

= 1000

(b)

Figure 2: (a) Laser energy evolution as a function of the

propagation distance normalized to the pump depletion

length. (b) Lineout of the longitudinal wakefield, Ez , after

a propagation distance corresponding to 80% of the pump

depletion length. the simulation parameters are a0 = 1,

Lrms = 1 and k0/kp = 100. In both (a) and (b) the

red dashed line is the result obtained with the full PIC

code ALaDyn. The black lines are the results obtained

with the “standard” envelope solver at different resolution,

namely Lrms/Δξ = 30, 100, 1000. The blue points are

the result obtained with the INF&RNO envelope solver for

Lrms/Δξ = 30.

background density is slightly higher (∼ 3×1017 e/cm3 for

the bubble regime, ∼ 1 × 1017 e/cm3 for the quasi-linear

regime) and also the accelerating fields are higher (because

of the higher background density and laser intensity) so the

final beam energy is approximately the same. In order to

correctly describe/represent the self-injection process and

the nonlinear field structure of the bubble wake an adequate

number of particles per cell and mesh resolution have to be

adopted. In our test we chose Δξ = 1/150, Δr = 1/30,

and Δτ/Δξ = 0.24 with 12 particles per cell in the inner

part of the computational domain (which includes the col-

lection region for the trapped particles) and 2 particles per

cell in the outer part. The size (normalized to kp) of the

computational box was ∼ 20 (longitudinal) × 25 (radial).

The simulation ran for ∼ 5 days on 800 CPUs and the total

cost was then ∼ 105 CPU hours which corresponds to a

speedup of about 2 orders of magnitude compared to stan-

dard tools. We notice that, even without an LBF modeling

capability, accurate simulations of 10 GeV stages become

feasible in a few days on relatively small computer clusters

using INF&RNO.
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