
GPGPU IMPLEMENTATION OF MATRIX FORMALISM FOR BEAM
DYNAMICS SIMULATION

N. Kulabukhova∗, Saint-Petersburg State University, Russia

Abstract

Matrix formalism is a map integration method for ODE
solving. It allows to present solution of the system as sums
and multiplications of 2-indexes numeric matrix. This ap-
proach can be easy implement in parallel codes. As the
most natural for matrix operation GPU architecture has
been chosen. The set of the methods for beam dynamics
has been implemented. Particles and envelope dynamics
are supported. The computing facilities are located in St.
Petersburg State University and presented by the NVIDIA
Tesla-based clusters.

INTRODUCTION

The performance available on graphics processing units
(GPUs) has led to interest in using GPUs for general-
purpose programming [1]. It is difficult, however, for most
programmers to program GPUs for general-purpose uses.

The raw computational power of a GPU dwarfs that of
the most powerful CPU, and the gap is steadily widen-
ing. Furthermore, GPUs have moved away from the tra-
ditional fixed-function 3D graphics pipeline toward a flexi-
ble general-purpose computational engine. Today, GPUs
can implement many parallel algorithms directly using
graphics hardware. Well-suited algorithms that leverage
all the underlying computational horsepower often achieve
tremendous speedups[2]. Truly, the GPU is the first widely
deployed commodity desktop parallel computer.

Here, we provide a comparison of different sort of paral-
lel technologies of the classic graphics pipeline; our goal is
to highlight those aspects of the real-time rendering calcu-
lation that allow graphics application developers to exploit
modern GPUs as general-purpose parallel computation en-
gines.

COMPARISON OF GPU AND CPU

The highly parallel workload of real-time computer
graphics demands extremely high arithmetic throughput
and streaming memory bandwidth but tolerates consider-
able latency in an individual computation since final im-
ages are only displayed every 16 milliseconds. These
workload characteristics have shaped the underlying GPU
architecture: Whereas CPUs are optimized for low latency,
GPUs are optimized for high throughput. The GPUs spe-
cialized architecture is not well suited to every algorithm.
Many applications are inherently serial and are charac-
terized by incoherent and unpredictable memory access.
Nonetheless, many important problems require significant

∗ kulabukhova.nv@gmail.com

computational resources, mapping well to the GPUs many-
core arithmetic intensity, or they require streaming through
large quantities of data, mapping well to the GPUs stream-
ing memory subsystem. Porting a judiciously chosen al-
gorithm to the GPU often produces speedups of five to
20 times over mature, optimized CPU codes running on
state-of-the-art CPUs, and speedups of more than 100 times
have been reported for some algorithms that map especially
well. Some successful examples of using GPUs are de-
scribed in [2].

In contrast, most CPU programs use a sequential pro-
gramming model and are not benefiting from the contin-
ued increase in transistors due to Moores law. They will
need to be rewritten or modified substantially to obtain in-
creased performance from new CPUs with multiple cores
on a chip. Furthermore, CPU clock speeds have plateaued
due to power concerns. On the other hand, GPU archi-
tectures have a number of disadvantages for parallel pro-
gramming. First, GPUs have a SIMD programming model.
GPUs are moving toward a SPMD model, although use of
loops and control-flow instructions in GPU pixel shaders
may currently degrade performance, not improve it. Sec-
ond, the actual architectures of GPUs are hidden behind
device drivers that support APIs that implement virtual ma-
chines. This abstraction and lack of detail can hamper ob-
taining the most performance out of a graphics processor.
For example, the virtual machines have no model of caches
and no easy way for programmers to indicate how to tra-
verse memory to facilitate memory reuse. This can make it
difficult to write parallel programs where memory locality
is crucial to performance. In addition, we must target APIs
designed to support graphics that introduce extra complex-
ity and overhead. Third, the programmable parts of GPUs
have had limited support for primitive types typically found
on CPUs.

Figure 1: Diagram of comparative performance.

Proceedings of ICAP2012, Rostock-Warnemünde, Germany MOSDC2

08 High Performance Computing

ISBN 978-3-95450-116-8

59 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



Figure 2: Comparison of SPbSU T-platform.

PARALLEL TECHNOLOGIES

Methods, libraries, interfaces to parallel a program are a
lot to choose. There are different groups of technologies,
those who use:

• a high-level communication libraries and interfaces
(API) (MPI, MPL, OOMPI, OpenMP);

• special ”parallelizing” structures in the programming
language (MPC++, mpC, Ada,MC#, Cray MPP For-
tran);

• automatic parallelization of sequential programs
(FORSE, KAP, PIPS, VAST, V-Ray);

• parallelized procedures of the specialized libraries
(ATLAS, PLAPACK, PIM, PARPACK);

• specialized software packages (ANSYS, ABAQUS,
CFX, FLOWVISION, LMS Virtual Lab., GDT).

We evaluate the effectiveness of using data parallelism to
program GPUs by providing results for a set of compute-
intensive benchmarks. All calculations were performed on
a hybrid cluster of SPbSU (see Fig. 2) computing center.
Its nodes contain a NVIDIA Tesla S2050 system that was
developed specifically as a GPGPU unit. For our goal we
choose OpenMP technology.

OPENMP

When we speak about parallel computations, some prob-
lems must be solved. First, the time is spent on writing the
program. Code must be effective and removable. It is im-
portant to view how this program will be used in future.

The OpenMP API using the fork-join model of parallel ex-
ecution is suitable for these aims.

OpenMP parallel program is constructed on sequential
code by adding directive, procedures, process variables.
This technology bases on the concept of shared memory,
thats why Symmetric Multiprocessing is used (SMP com-
puters). For this architecture threads (flows), running on
different processors, easy to support. For classic UNIX-
processes is more expensive to do this[4].

Scheme FORK/JOIN is used to support the parallel code.
Entering the parallel environment thread-master generates
complementary threads (operation FORK is running). Af-
ter that each thread has its own number, thread-master has
zero number. All threads run the same code of the parallel
environment. After work thread-master waits ending of all
other threads and continues to do next step (operation JOIN
is running).

SIMULATION

Matrix formalism [5, 6] is a high-performance mapping
approach for ODE solving. It allows to present solution of
the system in following form

X =
k∑

i=0

R1i(t)X
[i]
0 , (1)

where R1i are numerical matrices. So this approach can be
easy implement in parallel code. Due to the fact that only
matrix multiplication and addition are used, GPU program-
ming is especially suitable for this purpose.

There are exist two way for beam dynamics simulation:

MOSDC2 Proceedings of ICAP2012, Rostock-Warnemünde, Germany

ISBN 978-3-95450-116-8

60C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

08 High Performance Computing



• based on particle simulation;
• based on envelope description.

Particles Simulation

The research have shown that there is no great benefits
via parallelization of computational code for one particle
by using GPU (see Fig. 1) In Table 1 performance of dif-
ferent parallelization modes are presented, where

• 1 mult means one parallel section for multiplication;
• 2 mult means two parallel section for multiplication;
• add means one parallel section for addition.

In this case overhead on data sending is significant. On
the other hand matrix formalism allows to process a set of
the initial points, where parallelization is more preferably.

Let’s introduce a set of initial particle

M = (X1
0X

2
0 . . .X

p
0 ).

In according to the equation (1) the resulting points can
be calculated

M =

k∑

i=0

R1i(t)((X1
0 )

[i](X2
0 )

[i] . . . (Xp
0 )

[i]). (2)

Note that the sizes of matrices in the equation (2) is much
greater than in (1) when a set of initial particles is quite
large.

Table 1: Performance of Different Parallelization [sec]

1 mult 2 mult add

1 4.77 6.26 4.75

2 5.86 4.77 4.8

3 4.75 4.77 4.76

Envelope Simulation

Beam dynamics description based on envelope provides
an efficient approach to modeling. Let’s consider the en-
velope simulation is linear case (Fig. 3). In nonlinear case
the equations are quit difficult, but the concept is based on
linearization by introducing an extended space.

In linear case equation (1) is wrote in following form

X = R ·X0.

The elliptical envelope can be described by a quadratic
form

X∗AX < 1,

where X∗ means transpose of vector X .
By these equations a new envelope can be obtained:

X∗(R∗AR)X < 1,

where R∗AR is a matrix of new quadratic form.

Figure 3: Envelope simulation.

CONCLUSION

Matrix formalism is a high-performance approach for
beam dynamic modeling. The method can be implemented
in parallel codes on GPU. It allows simulate both long-term
evolution of a set of particles, and evaluating based on en-
velope description.

The future development of the research can be based on
other parallel techniques investigation and complete imple-
mentation of the described approaches.

ACKNOWLEDGMENT

Computations were partly carried out on cluster HPC-
0011654-001 of Saint-Petersburg State University, Faculty
of Applied Mathematics and Control Processes. Special
thanks for my scientific supervisor S. Andrianov.

REFERENCES

[1] D. Tarditi, S. Puri, J. Oglesby, “Accelerator: Using Data Par-
allelism to Program GPUs for General-Purpose Uses,” pro-
ceedings of ASPLOS, San Jose, California, USA, 2006, pp.
325–335.

[2] D. Luebke, G. Humphreys, “How GPUs Work,” How Things
Work, Computer, February, 2007, pp. 126-130.

[3] A. Degtyarev, I. Gankevich, “Efficiency Comparison of Wave
Surface Generation Using OpenCL, OpenMP and MPI,” Pro-
ceedings of 8th International Conf. Computer Science and In-
formation Tech., Yerevan, Armenia, 2011, p. 248–251.

[4] V. V. Voevodin, “Mathematical foundations of parallel com-
puting,” World Scientific Publishing Co., Series in computer
science, 1992, pp. 33–343.

[5] S. Andrianov, “The Convergence and Accuracy of the Matrix
Formalism Approximation,” TUSCC2, ICAP2012.

[6] A. Ivanov, S. Andrianov, “Matrix formalism for long-term
evolution of charged particle and spin dynamics in electro-
static fields,” WEACC3, ICAP2012.

Proceedings of ICAP2012, Rostock-Warnemünde, Germany MOSDC2

08 High Performance Computing

ISBN 978-3-95450-116-8

61 C
op

yr
ig

ht
c ○

20
12

by
th

e
re

sp
ec

tiv
e

au
th

or
s—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


