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Abstract

While there is wisdom in the old adage “the two con-

stants in life are death and taxes,” there are unavoidable

truths facing modern experimental and computational sci-

ence. First is the growing “impedance mismatch” between

our ability to collect and generate data, and our ability to

store, manage, and gain understanding from it. The second

is the fact that we cannot continue to rely on the same soft-

ware technologies that have worked well for the past couple

of decades for data management, analysis, and visualiza-

tion. A third is that these complementary activities must be

considered in a holistic, rather than Balkanized way. The

inseparable interplay between data management, analysis,

visualization, and high performance computational infras-

tructure, are best viewed through the lens of case studies

from multiple scientific domains, where teams of computer

and scientists combine forces to tackle challenging data un-

derstanding problems.

INTRODUCTION

Big data and its attendant challenges—managing it and

gaining insight into its secrets—are the subject of a sub-

stantial amount of research and development in industry,

academia, and the broader scientific community. These

challenges are often cited as being among the greatest bar-

riers facing scientific knowledge discovery [1].

Within the high performance visualization and analy-

sis community, several different but complementary ap-

proaches contribute solutions to these challenges. One ap-

proach focuses on increasing the capacity of the data anal-

ysis and visualization processing pipelines [2], and recent

results have shown such techniques capable of scaling to

extreme concurrency for both production [3] and research

codes [4].

An alternative approach is to focus instead on limiting

visualization and analysis processing to the subset of data

of interest where presumably the interesting subset is much

smaller in size than the original data. Projects in this space

have focused on blending index and query technologies

from scientific data management with visualization and

analysis tools to implement what is known as query-driven

visualization [5]. This class of solution has proven applica-

ble to diverse problems ranging from forensic cybersecu-

rity [6] to accelerator modeling [7].
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The focus of this paper is on the nexus between those two

approaches with an eye towards enabling scientific insight.

Three case studies, one from climate modeling and two

from accelerator modeling, show how high performance

computing technology and advances in visualization and

analysis software infrastructure combine to provide new

scientific data understanding capabilities brought to bear

on problems that can be characterized as “large data analy-

sis and visualization.”

CASE STUDY: TROPICAL CYCLONES

AND CLIMATE MODELING DATA

ANALYSIS

As with many computational science domains, the study

of climate and climate change, benefits from increasingly

powerful computational platforms. Modern climate codes,

which model processes in the atmosphere, ocean, ice caps,

and more, produce massive amounts of data. As discussed

below, when modeling the atmosphere at 0.25◦ resolution

for a period of about two decades of simulation time, the

CAM5.1 code [8] produces approximately 100TB of model

output. These data sizes will only grow in size with time.

One challenge facing this computational science com-

munity is a rich legacy of visualization and analysis tools

that are serial in implementation, yet such tools are not ca-

pable of processing modern-sized data sets due to memory

constraints. Worse, such tools are often incapable of per-

forming the type of analysis required to gain understanding

in ever-larger and ever-richer collections of data.

Output from codes like CAM5—which sample and dis-

cretize both space and time in a regular fashion and are

often generated by ensemble simulation experiments for

varying physical input parameters and initial conditions—

exposes data parallelism in many different ways to anal-

ysis and visualization tasks. Many types of visualization

or analysis codes can be run independently, and in paral-

lel, across individual ensemble members, timesteps, spatial

regions, and individual grid points.

There are several pressing needs and challenges within

the climate modeling community. First is the growing

“impedance mismatch” between their ability to collect or

generate data, and their ability to perform analysis and vi-

sualization on massive data sets. Second is the need to be

able to quickly and easily create and test a variety of dif-

ferent types of quantitative analysis activities, such as spa-

tiotemporal feature detection, tracking, and analysis. Third

is the ability to execute such capabilities on large, parallel
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(a) Visualization of 0.25◦ CAM5 output. (b) Cyclone tracks computed from (c) Comparing the annual count of

Figure 1: In this climate science example, a high resolution atmospheric code produces massive amounts of data and the

science objective is to study the number of cyclones that form over time. One timestep of model output is visualized

(a). The TECA code is run in parallel to identify cyclones and their tracks over time (b). These results are compared to

the counts of cyclones observed over the same time period, as well as to a third model’s (fvCAM2.2) output (c). Images

courtesy of Prabhat, Wehner, et al. (LBNL).

platforms, which have resources sufficient to process mas-

sive data sets in a reasonable amount of time.

Towards addressing these needs, Prabhat et al., 2012 [9],

developed the Parallel Toolkit for Extreme Climate Analy-

sis (TECA). Their objective was to enable rapid implemen-

tation of a variety of user-written and customizable spa-

tiotemporal feature detection, tracking, and analysis algo-

rithms in a single framework that accommodates different

varieties of data parallelism. Within that framework, there

are a number of capabilities that are common to all feature

detection tasks, such as loading data files, accommodating

different calendering systems, data scatter, etc.

To the user-developer who wants to implement a new

feature detection and tracking algorithm, they write code

that is handed a 1D/2D/3D sub-block of data and perform

their computations on that block, storing results in a “local

table.” Later, the local tables are gathered and processed

in a serial post-processing phase, which is typically much

smaller in size compared to the original problem and easily

accommodated in serial. The developer need not make any

MPI calls, nor be concerned with the mechanics of data

distribution or the gathering of results.

The authors present several case studies where TECA

is applied to detecting, tracking, and analyzing different

extreme-weather phenomena, including tropical cyclones,

extra-tropical cyclones, and atmospheric rivers. Results

from a similar, yet earlier tropical cyclones study, is shown

below in Figure 1. One of the major accomplishments of

their work is the ability to scale the tropical cyclone fea-

ture detection, tracking, and analysis code to 7,000 cores to

complete analysis/processing of 100TB of CAM5 model

output in approximately 2 hours, compared to an esti-

mated serial processing time of approximately 583 days.

More recent versions of this work, yet unpublished, have

scaled to approximately 80,000 cores. In that example,

the user-written code examines its local data block to de-

termine if that block contains a cyclone, which is defined

as a combination of locally high vorticity, low pressure

within a defined distance from the high vortex, and a locally

warm temperature combined with a temperature dropoff in

nearby locations.

CASE STUDY: LINACS, LPAS, AND

ACCELERATOR MODELING DATA

ANALYSIS

While the previous section focuses on quantitative anal-

ysis, specifically feature detection and tracking in climate

model output, this section focuses on visual data explo-

ration and analysis of particle-based data produced by ac-

celerator modeling codes. These codes output massive

amounts of particle-based data at each timestep; the two

examples below consist of hundreds of millions of parti-

cles per timestep. Generally speaking, the overall objec-

tive is to find and analyze “interesting particles,” where the

definition of “interesting” varies from study to study. Also,

generally speaking, these so-called interesting particles can

be characterized as satisfying some set of multivariate con-

ditions in space and time.

As with the climate example, these communities have

built up a rich legacy of serial tools over time for visualiza-

tion and analysis, tools that cannot accommodate modern

massive data sizes. The subsections below discuss work

aimed at providing the infrastructure for next-generation

visualization and analysis tools that are applicable to ac-

celerator modeling output of massive size and on modern

supercomputing platforms.

Laser-Plasma Accelerators

One central challenge in the analysis of large LPA sim-

ulation data arises from the fact that, while large num-

bers of particles are required for an accurate simulation,

only a small fraction of the particles are accelerated to

high energies and subsequently form particle features of

interest. During the course of a simulation, multiple high-

energy particle beams may form and additional particle

bunches may appear in secondary periods of the plasma

wave. Studying this acceleration phenomena requires gain-

ing insight into which particles become accelerated, how

are they trapped and accelerated by the plasma wave, and

100TB         of          CAM5 output. observed vs. modeled cyclones.
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Figure 2: Query-driven visualization and analysis of a large 3D plasma-based particle acceleration data containing ≈

90 × 106 particles per timestep. On the left (a), parallel coordinates of timestep t = 12 showing: (1) all particles above

the base acceleration level of the plasma wave (Query: px > 2× 109) (gray) and (2) a set of particles that form a compact

beam in the first wake period following the laser pulse (Query: (px > 4.856 × 1010)AND(x > 5.649 × 10−4))(red).

On the right (b), volume rendering of the plasma density illustrating the 3D structure of the plasma wave. The additional

selected beam particles are shown in red. Image source: Rübel et al., 2008 [7].

how these beams evolve over time. These questions are the

subject of work by Rübel et al, 2008 [7].

To identify those particles that were accelerated, the au-

thors, who included two accelerator physicists, performed

an initial threshold selection in px at a late timestep of the

simulation. This initial selection restricts the analysis to a

small set of particles with energies above the phase veloc-

ity of the plasma wave. Figure 2a shows an example of a

parallel coordinates plot of such a selection (gray).

Based on the results of the first query, the selection was

further refined to select the main particle beams of interest.

The authors first increased the px threshold to extract the

particles of highest energy. This initial refinement often re-

sults in the selection of multiple beam-like features trapped

in different periods of the plasma wave.

As illustrated in Figure 2a (red lines), to separate the dif-

ferent particle beams and to extract the main particle beam,

the selection is then often further refined through range

queries in the longitudinal coordinate x and transverse co-

ordinates y and z. In the selection process, parallel coordi-

nates provide interactive feedback about the structure of the

selection, allowing for fast identification of outliers and dif-

ferent substructures of the selection. High performance sci-

entific visualization methods are then used to validate and

further analyze the selected particles shown in Figure 2b.

The next step was to trace, or follow, and analyze the

high-energy particles through time. Particle tracing is used

to detect the point in time when the beam reaches its peak

energy and to assess the quality of the beam. Tracing the

beam particles further back in time, to the point at which

the particles enter the simulation window, supports analysis

of the injection, beam formation, and beam evolution pro-

cesses. Based on the information from different individual

timesteps, a user may refine a query, to select, for exam-

ple, beam substructures that are visible at different discrete

timesteps.

This particular study by Rübel et al., 2008 [7], which

included scalability tests out to 300-way parallel in 2008,

reduced the time required to track and analyze 300 accel-

erated particles from hours, using legacy serial processing

tools, to less than one second. Whereas the Rübel et al.,

2008 study demonstrated tracking tens to millions of par-

ticles, due to the mechanics of its internal algorithm, the

legacy serial processing tool would not be practical for use

on increasingly larger problem sizes.

Linear Accelerators

This case study focuses on visual data exploration and

analysis of output from large-scale, high resolution simula-

tions of beam dynamics in electron LINACS for a proposed

next-generation Xray free electron laser (FEL) at Lawrence

Berkeley National Laboratory (LBNL) [10]. Particle-in-

cell-based simulations of this type of accelerator require

large numbers of macroparticles (> 108) to control the nu-

merical macroparticle shot noise and to avoid the overes-

timation of microbunching instability, resulting in massive

particle data sets [11].

Chou et al, 2011 [12] focus on studying the transverse

halo and the longitudinal core. In both cases, the criteria a

given particle satisfies to be classified as “halo” or “core” is

a spatial one. Prior to this work, the typical workflow pat-

tern would be to run a serial analysis tool on each timestep,

where the serial code would examine each particle in turn,

and evaluate whether or not it satisfied the given criteria.

This process is O(N) in computational complexity, given

N particles per timestep. But, like the LPA example before,
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(a) Particle density plot (gray) and particles selected (red) by
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(b) Plot showing the number of halo particles vs. timestep.

Figure 3: Particles of the transverse halo shown in red from a single simulation timestep identified using a spatial condi-

tion query (a). The number of halo particles (b) increases over time, indicating a potential problem with this particular

accelerator design. Image source: Chou et al., 2011 [12].

this process is dramatically accelerated by using advanced

index-query infrastructure: that infrastructure accelerates

the processing time by avoiding the examine-every-particle

approach and replacing it with one where only those parti-

cles that are likely to satisfy the condition are examined.

The authors identify halo particles using the query r >

4σr. The derived quantity r = 2

√

x2 + y2, which is sepa-

rately computed and indexed, describes the transverse ra-

dial particle location. The transverse halo threshold is

given by σr = 2

√

σ2
x
+ σ2

y
, where σx and σy denote the

root mean square (RMS) beam sizes in x and y, respec-

tively. Using r for the identification of halo particles is

based on the assumption of an idealized circular beam cross

section. To ensure that the query adapts more closely to the

transverse shape of the beam, one may relax the assump-

tion of a circular beam cross section to an elliptical beam

cross section, by scaling the x and y coordinates indepen-

dently by the corresponding RMS beam size, σx and σy us-

ing, for example, a query of the form r2
s
(x, y) > 16, with

r2
s
(x, y) = ( x

σx

)2 + ( y

σy

)2. Halo particles identified with

this methodology, for one timestep, are shown in Figure 3a.

Details of the definition and analysis of the beam core are

in the original study [12].

Figure 3b shows the number of halo particles per

timestep identified by the halo query. It shows large varia-

tions in the number of halo particles, while in particular, the

larger number of halo particles at later timesteps are indica-

tive of a possible problem. In this case, the halo particles

and observations of an increase in the maximum particle

amplitude were found to be due to a mismatch in the beam

as it traveled from one section of the accelerator to the next.

These types of query-based diagnostics provide accelera-

tor designers with evidence that further improvement of the

design may be possible, and also provides quantitative in-

formation that is useful for optimizing the design to reduce

halo formation and beam interception with the beam pipe,

which will ultimately improve accelerator performance.

The authors used the FastQuery [12] system for the

parallel processing of index and query operations on the

NERSC Cray XE6 supercomputing system Hopper. The

pre-processing time to build the indexes for all timesteps

of the 50TB data set was about 2 hours. By using bitmap

indexing, evaluating queries for finding the halo and core

required only 12 seconds with 3000 cores, or around 20

seconds with 500 cores. The combination of visual data

exploration and efficient data management in the query-

driven visualization concept enables, in this way, repeated,

complex, large-scale query-based analysis of massive data

sets, which would otherwise not be practical, with respect

to both time as well as computational cost.

LESSONS LEARNED

These case studies, each of which are field-leading in

their own right, all have several themes in common.

Searching, querying. First, all studies involve some el-

ement of searching for data with specific features or char-

acteristics. Over the years, this particular topic has been

a subject of active research in the scientific data manage-

ment community. By searching scientific data using the

motifs presented here, which consist of high-dimensional,

read-only query operations, the bitmap index has proven to

be a useful and appropriate indexing structure [13]. The ac-

the halo query for timestep 20 of the simulation.
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celerator modeling case studies here make use of FastBit,

which is an Open Source, high performance compressed

bitmap indexing implementation [14].

Data I/O. Increasingly, the cost of performing I/O from

simulation codes dominates the analysis cycle. In the case

of the LINAC case study, the accelerator scientists had

never before seen the results of later simulation timesteps

due to the inability to write out that much simulation data.

This work was made possible through a partnership be-

tween computer and computational scientists whereby the

IMPACT-T simulation code was fitted to use a high perfor-

mance parallel I/O library. Looking further ahead, many in

the field expect an increasing amount of visualization and

analysis to be performed in situ, while particle and field

data are still resident in-core inside the simulation.

Integrative technologies. In our work, we are finding

that it is increasingly the case that disparate technologies—

simulation codes, data management, analysis, and visual-

ization infrastructure—must be designed and engineered to

work together as a whole. It is increasingly unlikely that

these technologies can be considered and used in isolation

from one another as design choices for one can have a pro-

found impact on others. This situation is exacerbated by

increasingly large and complex data sets and more sophis-

ticated lines of scientific inquiry.
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