High-Fidelity Injector Modeling with Parallel Finite Element 3D PIC Code Pic3P

Arno Candel,

Andreas Kabel, Lie-Quan Lee, Zenghai Li, Cho Ng, Greg Schussman and Kwok Ko

SLAC National Accelerator Laboratory

ICAP09 San Francisco, Sep 3, 2009

Work supported by U.S. DOE ASCR, BES & HEP Divisions under contract DE-AC02-76SF00515

SciDAC – Finite Element Electromagnetics

SLAC Researchers

Accelerator Physicists:

Arno Candel, Andreas Kabel, Kwok Ko, Zenghai Li, Cho Ng, Liling Xiao

Computational Scientists:

Lixin Ge, Rich Lee, Vineet Rawat, Greg Schussman

Graduate Students:

Sheng Chen (Stanford – Comp. Sci.), Braxton Osting (Columbia – Comp. Sci.)

Accelerator Collaborators

H. Wang, F. Marhauser, C. Reece, R. Rimmer (TJNAF), D. Li (LBNL), I. Ben-Zvi, R. Palmer, J. Kewisch, D. Naik (BNL), E. Chojnacki (Cornell), A. Grudiev, I. Syratchev, W. Wuensch (CERN)

Computational Science Collaborators

E. Ng, X. Li, I. Yamazaki, C. Yang (**TOPS/**LBNL), L. Dianchin (**ITAPS**/LLNL), K. Devine, E. Boman, (**ITAPS/CSCAPES**/SNL), D. Keyes (**TOPS/**Columbia), X. Luo, M. Shephard (**ITAPS**/RPI), W. Gropp (**CScADS**/UIUC), O. Ghattas (**TOPS**/UT Austin), Z. Bai (UC Davis), K. Ma (**ISUV**/UC Davis), A. Pothen (**CSCAPES**/Purdue), T. Tautges (**ITAPS**/ANL)

Parallel Finite Element EM Code Suite ACE3P

SLAC has developed the conformal, higher-order, C++/MPI-based parallel EM code suite ACE3P for high-fidelity modeling of large, complex accelerator structures.

ACE3P: Parallel Finite Element EM Code Suite (Advanced Computational Electromagnetics, <u>3</u> D, Parallel)			
ACE3P Modules		_	Accelerator Physics Application
Frequency Domain:	Omega3P	_	Eigensolver (nonlinear, damping)
	S3P	_	S-Parameter
<u>Time Domain:</u>	ТЗР	—	<u> Transients & Wakefields</u>
	Pic3P	_	EM Particle-In-Cell (this talk)
<u>Particle Tracking</u> :	Track3P	—	Dark Current and Multipacting
	Gun3P	-	Space-Charge Beam Optics
<u>Multi-Physics</u> :	TEM3P	_	EM-Thermal-Mechanical
Visualization:	ParaView	_	Meshes, Fields and Particles

Funded by SciDAC1 (2001-2006) and continuing under SciDAC2 (in black) Under development for ComPASS (2007-2011) (in blue)

Electromagnetic Particle-In-Cell Method

- Fields are discretized on structured or unstructured grid
- Typically, particles are points: $\mathbf{J}(\mathbf{x},t) = \sum q_i \cdot \delta(\mathbf{x} \mathbf{x}_i(t)) \cdot \mathbf{v}_i(t)$
- Charge conserved if discrete continuity equation fulfilled: $\frac{\partial \rho}{\partial t} + \nabla \cdot \mathbf{J} = \mathbf{0}$

Pic3P – Finite Element Particle-In-Cell Code

Pic3P uses ACD's proven <u>Parallel Finite Element Time-Domain Methods:</u>

- Unstructured mesh with tetrahedral elements (order q=1,2)
- Higher-order (Whitney) vector basis functions N_i (order *p*=1...6)

$$\mathbf{E}(\mathbf{x},t) = \sum_{i} e_{i}(t) \cdot \mathbf{N}_{i}(\mathbf{x})$$

For order p=2: 20 different N_i 's For order p=6: 216 different N_i 's

• Vector wave equation (combine Faraday's and Ampere's laws)

$$\frac{1}{c^2}\frac{\partial^2 \mathbf{E}}{\partial t^2} + \nabla \times \nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{J}}{\partial t}$$

• Unconditionally stable time integration, implicit method (Ax=b)

Pic3P Application – LCLS RF Gun

Unstructured mesh model of LCLS RF Gun

Load RF drive fields from <u>Omega3P</u>

Temporal evolution of electron bunch and scattered self-fields

Unprecedented Accuracy thanks to <u>Higher-Order</u> Particle-Field Coupling and <u>Conformal</u> Boundaries

Pic3P – Results and Validation

Pic3P – Realistic Particle Distributions

LCLS Commissioning Team

Physics - Causality in RF Gun

Visualization courtesy Greg Schussman

Pic3P – Causal Adaptive *p*-Refinement

Causal "Moving Window":

- 1. Enables accurate 3D emittance calculation on workstations in hours
- 2. Allows the solution of large problems on <u>supercomputers</u>

(however, localized charge distribution requires sophisticated parallel load balancing scheme)

Restrict calculations onto causal domain: 0th order means no field calculations... <u>Same Results!</u>

Dynamic Load Balancing using SciDAC Tools

Enhanced Pic3P simulation capability with advanced partitioning scheme

- Fields partitioned with graph-based methods (ParMETIS)
- Particles partitioned geometrically (Zoltan RCB 3D)
- Optimized communication pattern of fields and particle currents
- Enables solution of large problems: 24k CPUs, 750M DOFs, 5B particles

Example: LCLS RF gun, colors indicate distribution to different CPUs

Pic3P – Strong Scaling (Jaguar XT5)

LCLS RF Gun Emittance Convergence: 305k 2nd-order elements, 2M DOFs, 500k particles, iterative linear solver

Example Mesh Partitioning on 16 CPUs

Time for fully converged results: ~2h on 128 CPUs

Pic3P – BNL SRF Gun

BNL Polarized SRF Gun:

1/2 cell, 350 MHz, 24.5 MV/m, 5 MeV, solenoid (18 Gauss), recessed GaAs cathode at T=70K inserted via choke joint, cathode spot size 6.5 mm, Q=3.2 nC, 0.4eV initial energy

Cut-view of unstructured mesh near cathode

Bunch transit through SRF gun (only space-charge fields shown)

Pic3P – BNL SRF Gun Emittance

Pic3P – Potential Future Work

Cathode Physics

Photoemission Surface roughness Laser imperfections

Injector Modeling

 Gun + drift with solenoid
 Shorter bunches (sub-ps)
 LCLS-2 parameters

Summary

- SLAC's Advanced Computations Department has developed the Parallel Finite Element ACE3P Code Suite for high-fidelity electromagnetic modeling of complex accelerator structures, using conformal geometry and higher-order field representation.
- ACE3P modules run on NCCS and NERSC supercomputers and provide state-of-the-art simulation capabilities for accelerator applications.
- **Pic3P** was designed for efficient large-scale self-consistent simulations of beam-cavity interactions in space-charge dominated regimes.
- **Pic3P** was applied to calculate beam emittance in the LCLS RF gun and in the BNL polarized SRF gun and fast solution convergence was observed.

