End to End Simulation of the GSI Linear Accelerator Complex

Gianluigi Clemente, W.Barth, L.Groening, A. Orzhekhovskaya, S.Yaramishev GSI, Darmstadt U.Ratzinger, R.Tiede, J.W. Goethe University, Frankfurt am Main A.Kolomites, S.Minaev, ITEP, Moscow

• **GSI Linear Accelerator Facility**

Heavy Ion Linear Accelerator UNILAC

• From GSI to FAIR

- HSI Upgrade

• The FAIR Proton Injector

- Cavity development at Frankfurt University
- Beam Dynamics
- Status of the Project
- Commissioning of the HITRAP decelerator
- Summary and Outlook

ICAP 2009

San Francisco, 3rd September 2009

The GSI UNIversal Linear ACcelerator

The FAIR Accelerator Complex

UNILAC-Upgrade for FAIR

Measurements

Project	Target	
High Current U ⁴⁺ Primary beam	18 mA @ HSI output (1.4 MeV/u)	
Gas Stripper	13 % Efficiency for U ²⁸⁺ 100 % Transmission	
Alvarez Quadrupole Supplies	$\sigma_0 = 55^\circ$ for U ²⁸⁺	
Charge Separator	5 mA for U ⁷³⁺ beam	
General Improvement of Diagnostics for high intensity		

The HSI RFQ was upgraded in 2004

New electrodes were produced

Power consumption reduced from 620 kW to 380 kW

Simulations with generated particle distribution from measured emittance showed a bottleneck concerning the FAIR high current requirements

Results were confirmed by measurements

HSI-RFQ New Design 2009

- Higher transverse acceptance and phase advance (keeping maximum field at the electrode surface)
- New Input Radial Matcher design → improved beam matching
- Improved beam dynamics for gentle buncher optimized for rapid and uniform separatrix filling →
- Resonant frequency shift with increased average radius and reduced electrode thickness can easily be compensated

	2009 Design	2004Design
Voltage, kV	155.	125.
Average radius, cm	0.6	0.5245 - 0.7745
Electrode width, cm	0.84	0.9 – 1.08
Maximum field, kV/cm	312.0	318.5
Modulation	1.012 – 1.93	1.012 – 2.09
Synch. Phase, degree	-90 ⁰ 28 ⁰	-90 ⁰ 34 ⁰
Aperture, cm	0.410	0.381
Min. transverse phase advance, rad	0.555	0.45
Norm. transverse acceptance, cm mrad	0.856	0.73
Output energy, MeV/u	0.120	≈ 0.1185
Number of cells with modulation	394	343
Length of electrodes, cm	921.74	921.74

Beam dynamics studied with DYNAMION & PARMTEQ-M IRM Designed with DESRFQ at ITEP

Recent numerical studies

External EMS 3D Mapping of electrical field for

- RFQ matching out section
- Superlens
- Integration with the intrinsic 8 terms potential solver of DYN.
- Realistic description including details =>
- emittance orientation at the RFQ output
- exact final energy
- optimum synchronous phase in Superlense
- adjustment of the particle energy at IH entrance

G.Clemente

Topic

- **GSI Linear Accelerator Facility**
 - Heavy Ion Linear Accelerator UNILAC
- From GSI to FAIR
 - HSI Upgrade
- The FAIR Proton Injector
 - Cavity development at Frankfurt University
 - Beam Dynamics
 - Status of the Project
- Commissioning of the HITRAP decelerator
- Summary and Outlook

Accelerator Chain for Cooled Antiprotons

General Overview

- ECR proton source & LEBT
- RFQ (4-rod)

 6 Pairs of Coupled CH-DTL 	Beam energy Beam current (op.)	70 MeV 35 mA
• 2 Bunchers	<u>Beam current (des.)</u> Beam pulse length	<u>70 mA</u> 36 us
• 14 Magnetic	Repetition rate Rf-frequency	4 Hz 325.224 MHz
 4.9 MW of beam loading (peak), 710 W (average) 	Tot. hor emit (norm) Tot. mom. spread	2.1 / <u><i>4.2</i></u> µm ≤ + 10 ⁻³
 11 MW of total rf-power (peak), 1600 W (average) 	Linac length	≈ 35 m

• 41 beam diagnostic devices

Proton Source & LEBT

Requirements at LEBT exit:

P current	≥ 80 mA		
βγε _{tot} (transv.)	≤ 1.8 µm		
High reliability			
High stability			

SILHI at CEA/Saclay: 95 keV, > 100 mA, dc

Beam Measurements at CEA/Saclay

SILHI at CEA/Saclay:

95 keV, > 100 mA, dc

LEBT exit: two measurements using different electronics, separated by 4 days, intermediate opening of the plasma chamber:

During 3 weeks of measurements :

- always reliable & stable 100 mA beam
- no single sparking of the HV
- no interruption due to any malfunction
- France submitted Eol to deliver operating set-up in-kind
- Set-up to be fully assembled and tested at CEA/Saclay
- Joint re-commissioning at GSI

RFQ

4-rod model (A. Schempp, Univ. Frankfurt)

Input energy	95 keV
Input Current	100 mA
Input emitt. (transv., norm.)	1.8 mm mrad
Frequency	325.224 MHz
Output energy	3.0 MeV
Accelerated current	98 mA
Output emitt. (transv., norm.)	2.1 mm mrad
Distance to closest mode	54 MHz
Rf – input power	0.74 MW
Electrode voltage	90 kV
Max. electric field strength	34.7 MV/m (1.94 E _k)
Aperture radius	2.4 – 3.8 mm
Length	3.2 m

- state of the art: Alvarez type cavities (SNS, J-PARC), regular focusing:
 - acceleration at negative rf-phases, reducing real estate gradient, i.e. R_s
 - one quadrupole per drift tube \rightarrow many quadrupoles to align, cool, etc ...
 - quadrupoles need space \rightarrow further reduction of R_s
- KONUS beam dynamics (<u>KO</u>mbinierte <u>NU</u>II-Grad <u>S</u>truktur):
 - acceleration close to rf-crest
 - avoiding quadrupole in every drift tube
 - \bullet increase effective ${\sf R}_{\sf s}$

DTL: Longitudinal Dynamics

Production of Prototype Cavity

Beam Dynamics

RFQ Output distribution generated with PARMTEQ

45 mA

100 mA

	45 mA	100 mA
RMS ε norm hor	0.26	0.25
RMS ε norm ver	0.26	0.25
RMS ε norm Δφ ΔW	1.29	1.25

PARAMETER	45 mA	100 mA
RMS ε norm X-X' mm mrad	0.40	0.70
RMS ε normY-Y' mm mrad	0.44	0.58
RMS ε normΔΦ- ΔW keV/ ns	2.09	2.45

Topic

- **GSI Linear Accelerator Facility**
 - Heavy Ion Linear Accelerator UNILAC
- From GSI to FAIR
 - HSI Upgrade
- The FAIR Proton Injector
 - Cavity development at Frankfurt University
 - Beam Dynamics
 - Status of the Project
- Commissioning of the HITRAP decelerator
- Summary and Outlook

The Accelerator Chain to HITRAP

•acceleration to 400 MeV/u in the SIS18

IH Beam Dynamics: Nominal case

G.Clemente

WP of the DDB+IH has to be carefully selected according to the energy of the ESR

Example of wrong Phase settings of IH

Energy with 4.04 MeV/u from the ESR

First Beam Commissioning: Energy from ESR 4.04 MeV/u

- In August and October first beams available to commission the Bunchers-IH beam line
- No fine tuning of the IH was possible
- ⁶⁴Ni²⁸⁺ to measure the emittance after the buncher
- ¹⁰Ne²⁰⁺ to measure the energy after the IH

Pepper pot single shot emittance scanner after DDB: RMS Emittance for 88 % 1,23 π mm mrad

Steerers + vertical diamonds detector array after the IH: signals proportional to ions energy

Evidence of decelerated ions with major fraction of the beam at ~ 2.3 MeV/u, 4 MeV/u and even more

Results: Emittance measurements

Emittance in front of IH using the emittance evaluation with beam profiles in dependence of lens variation

beam tracked from IH input back to ejection of ESR: results in agreement with previous simulations

Results from Diamond detector

beam profile separation of 0.5 and 4 MeV/u beam on diamond

Triplet used to focuse the beam on vertical plane Steeres used to separate different energies

Huge uncertainty since only a fraction of the beam is seen

ratio between fully decelerated and other transmitted ions

1:7.22

13% of ions @ 500keV/u (seen 1-dimensional)

RFQ DESIGN and Beam Dynamics

Input phase width / energy spread	\pm 9° / \pm 10 keV/u	\pm 9° / \pm 5 keV
Injection energy / output energy	500 keV/u / 6 keV/u	
Charge-to-mass ratio q/A	> 1/3	
Operation frequency	108.408 MHz	
Electrode voltage	70 kV	
Modulation	2.44	
Phase range	$-18^{\circ}70^{\circ}$	
RFQ length	1.9 m	
Aperture	4 mm radius	
Input emittance (normalized)	$0.24 \ \pi \ \mathrm{mm} \ \mathrm{mrad}$	
Output energy spread	± 0.5 keV/u (8.3 %)	± 0.38 keV/u (6.3%)
Longitudinal input emittance	23 nsec .keV/u	11.5 nsec keV/u
Longitudinal output emittance (80 %)	10 nsec keV/u	5.6 nsec keV/u
Longitudinal output emittance (100 %)	23 nsec keV/u	9.0 nsec keV/u
Radial output emittance (normalized)	$0.37 \pi \text{ mm mrad}$	$0.25 \pi \text{ mm} \text{ mrad}$
Transmission	93%	100%
Power consumption	80 kW	

RFQ Decelerator, F=108.5 MHZ, U=70KV NCELL=143, NPOINT=933, NTOTAL=1000, lin=0 mA

Outlook and Summary

•FAIR requirements pushed towards a new design of the HSI-RFQ

•The new design was commissioned in July 2009 matching the FAIR requirements •Primary proton beam intensities will be increased by a new proton linac (to be commissioned in 2013).

•First RF coupled cavity in construction

• In the frame of atomic and nuclear physics at GSI the decelerator facility HITRAP is being commissioned.