The Study of Space Charge Effects for RCS/CSNS

S. Xu, S. Wang, S. Fang Sep.3,2009, San Francisco

Outline

- A brief introduction to CSNS
- Space charge effects in painting
- Space charge effects in ramping
- Operational tune
- Lattice type
- Summary

CSNS Layout

CSNS Parameters

Beam power on target [kW]	100
Beam energy on target [GeV]	1.6
Ave. beam current [µA]	63
Pulse repetition rate [Hz]	25
Protons per pulse [10 ¹³]	1.88
Linac energy [MeV]	80
Linac type	DTL
Target number	1
Target material	Tungsten
Number of spectrometers	3(18)
Beam power upgrade capability (kW)	500

System name September 4, 2009

RCS Design

- To achieve hands-on maintenance: ~ uncontrolled beam loss below 1 W / m (Large acceptance and beam collimation)
- 4-fold symmetry: injection, extraction, collimation occupy a long straight section respectively
- One-turn extraction
- Increase the injection energy from 80MeV to 130MeV in the second stage, and the pulse repetition rate will be increased to 50Hz

Rapid Cycling Synchrotron Layout

RCS parameters

Circumference (m)	228
Superperiod	4
Number of dipoles	24
Number of long drift	12
Total Length of long drift (m)	75
Betatron tunes (h/v)	4.86/4.78
Chromaticity (h/v)	-4.3/-8.2
Momentum compaction	0.041
RF harmonics	2
RF Freq. (MHz)	1.0241~2.3723
RF Voltage (kV)	165
Trans. acceptance (<i>π</i> μ m.rad)	540
	Page

System name September 4, 2009

RCS-Lattice

• Dispersion-free long uninterrupted straight

For collimation & injection/extraction

• Straight at arc with large dispersion

High efficiency momentum collimation

Tune Diagram for 4-fold Structure

red / 1st order structure resonance

golden / 2nd order structure resonance

blue / 3rd order structure resonance

green / 4th order structure resonance

gray : 3rd deference structure resonance

pink / coupling resonance

Correlated Painting with/without SC

Correlated Painting with/without SC

without SC

without SC

Transverse Coupling in Correlated Painting

Anti-Correlated Painting with/without SC

System name September 4, 2009

Correlated Painting with/without SC

without SC

with SC

without SC

Without transverse coupling

Injection Optimization in Longitudinal Direction

Without momentum offset

With momentum offset

Injection Optimization in Transverse Direction

- For anti-correlated painting, it does not have the capability of painting over the halo in one direction (vertical direction here).
- The injected particles on the effects of space charge expand towards inner and outer region of the emittance space.

Particles distribution in (y, y') phase space after painting

Injection Optimization in Transverse Direction

- Injectling most particles a smaller emittance than the final target value to "reduce" halo production.
- Injecting less particles in the inner and outer region of the emittance space to produce a uniform transverse distribution and reduce halo production.

a: injecting particles a small emittance

b: injecting less particles in the inner and outer region of the emittance space

c: bump in theory

Particle distribution with Different Injection Orbit Bump

bump in theory

injecting particles a small emittance

injecting less particles in the inner and outer region of the emittance space

System name September 4, 2009

Space Charge Effects in Ramping

time evolution of the 99% emittance

Diffusion of Particles Among Different Parts

The initial distribution is produced by anti-correlated painting

The Dependence of Emittance Growth on Painting Scheme

time evolution of the 99% emittance using different injection painting scheme

The Dependence of Emittance Growth on Initial Distribution

The Dependence of Emittance Growth on Initial Distribution

- a: bump in theory
- b: injecting less particles in the inner and outer region of the emittance space
- **C:** injecting all particles a smaller emittance than the final target

All the initial distributions show a similar trend of emittance growth without magnet errors.

The Dependence of Space Charge Effects on the Bare Tune

System name September 4, 2009

Space Charge Induced Structure Resonance

Poincaré maps of two test particles during ramping with the bare tune 4.82/4.36

Structure resonance Q_v=4

Lattice Type vs SC – Layout of Three Lattices

FODO

Triplet

Lattice Type vs SC – Parameters of Three Lattices

Structure	Triplet	FODO	Hybrid
Circumference (m)	228	240	248
Super-periods	4	4	4
Qx/Qy	4.86/4.78	5.86/5.78	5.86/5.78
Max. β _h /β _v (m)	11/26	17/17	24/25
Max. drift (m)	11	4.5	9.3

The lattice of the hybrid structure which is the early version consists of FODO cells in the arcs and doublet cells in the straight sections.

Lattice Type vs SC – 99% emittance

Emittance vs Lattice Type

Summary

- Many simulation work has been done for space charge effects study, including the space charge effects in painting, ramping and the dependence of space charge effects on the bare tune, lattice type.
- The choice of bare tune is very important, the lattice of FODO structure is the best, but it doesn't have long enough uninterrupted straight for injection.
- optimization of the injection scheme for minimum halo formation and small tune spread
- Further work will involve the study of space charge effects in the presence of magnet field errors.

Acknowledgment

The authors would like to thank Shinji Machida for

providing us the SIMPSONS code and helps on test run

Thanks for your attention!