
THE OBJECT ORIENTED PARALLEL ACCELERATOR LIBRARY
(OPAL), DESIGN, IMPLEMENTATION AND APPLICATION

A. Adelmann∗, Ch. Kraus, Y. Ineichen, PSI, Villigen Switzerland
S. Russell, LANL, Los Alamos, USA,
Y. Bi, J.J Yang, CIAE, Beijing, China

Abstract
OPAL (Object Oriented Parallel Accelerator Library) is

a tool for charged-particle optic calculations in accelera-
tor structures and beam lines including 3D space charge,
short range wake-fields and 1D coherent synchrotron radi-
ation and particle matter interaction. Built from first princi-
ples as a parallel application, OPAL admits simulations of
any scale, from the laptop to the largest High Performance
Computing (HPC) clusters available today. Simulations,
in particular HPC simulations, form the third pillar of sci-
ence, complementing theory and experiment. OPAL has
a fast FFT based direct solver and an iterative solver, able
to handle efficiently exact boundary conditions on complex
geometries. We present timings of OPAL-T using the FFT
based space charge solver with up to several thousands of
cores.

OPAL IN A NUTSHELL
OPAL is a tool for charged-particle optics in accelerator

structures and beam lines. Using the MAD language with
extensions, OPAL is derived from MAD9P and is based on
the CLASSIC class library, which was started in 1995 by an
international collaboration. The Independent Parallel Parti-
cle Layer (IP 2L) is the framework which provides parallel
particles and fields using data parallel ansatz, together with
Trilinos for linear solvers and preconditioners. Parallel in-
put/output is provided by H5Part/Block a special purpose
API on top of HDF5. For some special numerical algo-
rithms we use the Gnu Scientific Library (GSL).

OPAL is built from the ground up as a parallel appli-
cation exemplifying the fact that HPC (High Performance
Computing) is the third leg of science, complementing the-
ory and experiment. HPC is now made possible through the
increasingly sophisticated mathematical models and evolv-
ing computer power available on the desktop and in super
computer centres. OPAL runs on your laptop as well as on
the largest HPC clusters available today.

The state-of-the-art software design philosophy based on
design patterns, makes it easy to add new features into
OPAL, in the form of new C++ classes. Figure 1 presents a
more detailed view into the complex architecture of OPAL.

OPAL comes in the following flavors:

• OPAL-T

• OPAL-CYCL
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Figure 1: The OPAL software structure

• OPAL-MAP (not yet fully released)

• OPAL-ENVELOPE (not yet fully released)

OPAL-T tracks particles with time as the independent
variable and can be used to model beam lines, dc guns,
photo guns and complete XFEL’s excluding the undula-
tor. Collective effects such as space charge (3D solver),
coherent synchrotron radiation (1D solver) and longitudi-
nal and transverse wake fields are considered. When com-
paring simulation results to measured data, collimators (at
the moment without secondary effects) and pepper pot el-
ements are important devices. OPAL-CYCL is another fla-
vor which tracks particles with 3D space charge including
neighboring turns in cyclotrons, with time as the indepen-
dent variable. Both flavors can be used in sequence, hence
full start-to-end cyclotron simulations are possible. OPAL-
MAP tracks particles with 3D space charge using split op-
erator techniques. OPAL-ENVELOPE is based on the 3D-
envelope equation (à la HOMDYN) and can be used to de-
sign XFEL’s

Documentation and quality assurance are given our high-
est attention since we are convinced that adequate docu-
mentation is a key factor in the usefulness of a code like
OPAL to study present and future particle accelerators.
Using tools such as a source code version control system
(subversion), and source code documentation (Doxygen)
together with an extensive user manual we are committed
to provide users as well as co-developers with state-of-the-
art documentation for OPAL. Rigorous quality control is
realized by means of daily build and regression tests.
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In the sequel we will only discuss features of OPAL-T
based on the current production version 1.1.5.

MODELS
In recent years, precise beam dynamics simulations in

the design of high-current low-energy hadron machines as
well as of 4th generation light sources have become a very
important research topic. Hadron machines are charac-
terized by high currents and hence require excellent con-
trol of beam losses and/or keeping the emittance of the
beam in narrow ranges. This is a challenging problem
which requires the accurate modeling of the dynamics of a
large ensemble of macro or real particles subject to compli-
cated external focusing, accelerating fields and wake fields,
particle-matter interaction, as well as the self-fields caused
by Coulomb interaction of the particles. In general the
geometries of particle accelerators are large and compli-
cated which has a direct impact on the numerical solution
method.

Some of the effects can be studied by using a low dimen-
sional model, i.e., envelope equations [1, 2, 3, 4]. These are
a set of ordinary differential equations for the second-order
moments of a time-dependent particle distribution. They
can be calculated fast, however the level of detail is mostly
not sufficient for quantitative studies. Furthermore, a priori
knowledge of critical beam parameters such as the emit-
tance is required with the consequence that the envelope
equations cannot be used as a self-consistent method.

One way to overcome these limitations is by considering
the Vlasov-Poisson description of the phase space, includ-
ing external fields and self-fields and, if needed, other ef-
fects such as wakes. To that end let f(x,v, t) be the density
of the particles in the phase space, i.e., the position-velocity
(x,v) space. Its evolution is determined by the collision-
less Vlasov equation,

df

dt
= ∂tf + v · ∇xf +

q

m0
(E + v×B) · ∇vf = 0, (1)

where m0, q denote particle mass and charge, respectively.
The electric and magnetic fields E and B are superposi-
tions of external fields and self-fields (space charge),

E = Eext + Eself + Ewake, B = Bext + Bself . (2)

If E and B are known, then each particle can be propagated
according to the equation of motion for charged particles in
an electromagnetic field,

dx(t)
dt

= v,
dv(t)

dt
=

q

m0
(E + v ×B) .

After the movement of the particles Eself and Bself have
to be updated. To that end we change the coordinate system
into one moving with the particles. By means of the ap-
propriate Lorentz transformation [5] we arrive at a (quasi-
) static approximation of the system in which the trans-
formed magnetic field becomes negligible, B̂ ≈ 0. The

transformed electric field is obtained from

Ê = Êself = −∇φ̂, (3)

where the electrostatic potential φ̂ is the solution of the
Poisson problem

−∆φ̂(x) =
ρ̂(x)
ε0

, (4)

equipped with appropriate boundary conditions. Here, ρ̂
denotes the spatial charge density and ε0 is the dielectric
constant. By means of the inverse Lorentz transformation
the electric field Ê can then be transformed back to yield
both the electric and the magnetic fields in (2).

In OPAL the discretized Poisson equation is either
solved by a combination of a Green function and FFT or
by a conjugate gradient algorithm, preconditioned with al-
gebraic multi-grid using smoothed aggregation (SA-AMG
PCG). This 3D solver has the unique capability to include
the exact boundary geometry. The right hand side in (4)
is discretized by sampling the particles at the grid points.
In (3), φ̂ is interpolated at the particle positions from its
values at the grid points. We also note that the FFT-based
Poisson solvers and similar approaches [6, 7] are usually
restricted to box-shaped or open domains in order to obtain
good performance.

Field Solver
A Direct FFT Based Poisson Solver In our imple-

mentation of the PIC method, firstly a rectangular 3D grid
containing all particles is constructed. Subsequently, the
charges are interpolated onto the grid points. Then the dis-
cretized Poisson equation is solved on the grid to obtain the
scalar field at the grid points. The electric field is calculated
on the grid and interpolated back on to the positions of the
particles .

In 3D Cartesian coordinates, the solution of the Poisson
equation at point x can be expressed by

φ(x) =
1

4πε0

∫
G(x,x′)ρ(x,x′)dx′ (5)

with G the 3D Green function

G(x,x′) =
1√

(x− x′)2
(6)

assuming open boundary conditions. The typical steps of
calculating space charge fields using Hockney’s FFT algo-
rithm is sketched in Algorithm 1, where the quantities with
superscript D (discrete) refer to grid quantities.

The image charge of a beam near a cathode is not neg-
ligible, hence open boundary conditions are not justified
in such a case. To find the space-charge forces on the
beam from the image charge by the standard Green func-
tion method, we need to solve the Poisson equation with
a computational domain containing both the image charge
and the beam. We are using a shifted-Green function [8]
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Algorithm 1 3D Space Charge Calculation
1: procedure 3DSpaceCharge(In: ρ, G, Out: Esc,Bsc)
2: Create 3D rectangular grid which contains all particles,

3: Interpolate the charge q of each macro-particle to
nearby mesh points to obtain ρD,

4: Lorentz transformation to obtain ρD in the beam rest
frame Sbeam,

5: FFT ρD and GD to obtain ρ̂D and ĜD,
6: Determine φ̂D on the grid using φ̂D = ρ̂D · ĜD,
7: Use FFT−1 of φ̂D to obtain φD,
8: Compute ED = −∇φD,
9: Interpolate E at the particle positions x from ED,

10: Perform Lorentz back transform to obtain Esc and Bsc

in frame Slocal and transform back to Slab.
11: end procedure

technique in order to efficiently compute the correct poten-
tial at the cathode. With this technique, the FFT is used to
calculate the cyclic convolution and the previous algorithm
can be used to calculate the potential in the shifted field
domain.

At emission from a dc gun, or when calculating neigh-
boring turns in a cyclotron, the electrostatic approximation
is not valid anymore. To overcome this problem we divide
the beam into n energy bins. The space charge solver uses
now n separate Lorentz transformations.

To show the parallel performance of OPAL-T we con-
sider two problems, the first one has 5 · 106 particles on a
64×64×128 mesh and 200 time steps are considered. The
used CPU time as a function of cores is shown in Figure 2.
We obtain in the order of 5 · 106 particle pushes per sec-
ond on a 16 nodes (HP BL460c blades) cluster, each node
having a dual-socket quad core Intel Xeon E5450 3.0 GHz
with 16GB ECC RAM. For a high-bandwidth low-latency
communication the InfiniBand interconnect is used.

 10

 100

 1000

 10000

 100000

 128 64 32 16 8 1

CP
U 

[s
ec

]

Cores
Total

Direct Solver
Integration1
Integration2

Bounding box

Figure 2: CPU time of a production run showing the scaling
of the most important parts of OPAL-T on a 128 core HP
Cluster.

The second problem consists of 1·108 particles on a 5123

mesh and timings for 3 integration steps are shown in Fig-

ure 3. The timings where obtained on the Cray XT5 clus-
ter of the Swiss Supercomputing Center (CSCS) in Manno.
Each of the 1844 compute nodes consists of 2 quad-core
AMD Opteron 2.4 GHz Shanghai processors giving 8 cores
in total per node with 16 GBytes of memory. The high-
speed network based on a SeaStar 2.2 communications
processor which is able to provide 2 GBytes/s of injec-
tion bandwidth for the node, with a theoretical peak of 9.6
GBytes/s of bandwidth in each direction for the through-
flow of packets out on the network.
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Figure 3: CPU time of a test run showing the scaling of the
most important parts of OPAL-T on a Cray XT5.

A Fast Iterative Parallel Poisson Solver on Irregu-
lar Domains The problem is discretized by finite dif-
ferences. Depending on the treatment of the Dirichlet
boundary the resulting system of equations is symmetric
or ‘mildly’ nonsymmetric positive definite. In all cases,
the system is solved by the preconditioned conjugate gradi-
ent algorithm with smoothed aggregation (SA) based alge-
braic multigrid (AMG) preconditioning. Additionally we
investigated variants of the implementation of SA-AMG
that lead to considerable improvements in the execution
times. We demonstrate good scalability of the solver on
distributed memory parallel processor with up to 2048 pro-
cessors in [9]. In this paper we also compare our SAAMG-
PCG solver with the FFT-based solver described in the pre-
ceding paragraph.

Particle Matter Interaction
The physics models describing particle matter interac-

tion includes energy loss and Coulomb scattering. The nu-
clear scattering is not yet included for particles in the or-
der of hundreds of MeVs. Their contribution is negligible
compared to Coulomb scattering. The energy loss model is
based on the Bethe-Bloch equation. Comparing the stop-
ping power with the PSTAR program of National Institute
of Standards and Technology (NIST), we find errors in the
order of 10% for copper, from several MeV to 10 GeV.
Important for our immediate application at PSI, the error
is within 3% in the region from 50 MeV to 1 GeV. In gen-
eral, there is energy straggling when a beam passes through

Proceedings of ICAP09, San Francisco, CA WE3IOPK01

Computer Codes (Design, Simulation, Field Calculation)

109



the material. For relatively thick absorbers such that the
number of collisions is large, the energy loss distribution
is Gaussian [10]. The Coulomb scattering is treated as two
independent events: the multiple Coulomb scattering and
the large angle Rutherford scattering, using the distribution
given in [11].

Validation A 72 MeV cold Gaussian beam with σx =
σy = 5 mm is send through a copper slit with the half aper-
ture of 3 mm from 0.01 to 0.1 m. Figure 4 shows some tra-
jectories of particles which are either absorbed or deflected
by the collimator. Most of the particles were absorbed
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Figure 4: Trajectories of particles which are either ab-
sorbed or deflected by the collimator.

within a range of about 7.4 mm, except for a few which
were deflected by the collimator. As a benchmark of the el-
liptic collimator models in OPAL, the energy spectrum and
angle deviation is compared against two general-purpose
Monte Carlo codes, MCNPX [12] and FLUKA [13, 14],
as shown in Fig. 5. The deflected particles contribute to
the energy spectrum and angle deviation after a collimator.
These particles may be lost downstream.
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