
GRAPHICAL PROCESSING UNIT-BASED PARTICLE-IN-CELL

SIMULATIONS*

Viktor K. Decyk, Department of Physics and Astronomy, Tajendra V. Singh and Scott A. Friedman,
Institute for Digital Research and Education, UCLA, Los Angeles, CA 90095, U. S. A.

Abstract

 New emerging multi-core technologies can achieve high
performance, but algorithms often need to be redesigned

to make effective use of these processors. We will

describe a new approach to Particle-in-Cell (PIC) codes

and discuss its application to Graphical Processing Units.

INTRODUCTION

High Performance Computing (HPC) has been

dominated for the last 15 years by distributed memory

parallel computers and the Message-Passing Interface

(MPI) programming paradigm. The computational nodes

have been relatively simple, with only a few processing

cores. This computational model appears to be reaching a

limit, with several hundred thousand simple cores in the
IBM Blue Gene. The future computational paradigm will

likely consist of much more complex nodes, such as

Graphical Processing Units (GPUs) or Cell Processors,

which can have hundreds of processing cores, with

different and still evolving programming paradigms, such

as NVIDIA’s CUDA. One anticipates that the next

generation HPC computers, unlike Blue Gene, will consist

of a relatively small number (<1,000) nodes, each of

which will contain hundreds of cores. High performance

on the node will in most cases require new algorithms.

Between nodes, however, it is likely that MPI will

continue to be effective.
 Particle-in-Cell (PIC) codes [1-2] are one of the

most important codes in plasma physics and other

sciences, and use substantial computer time at some of the

largest supercomputer centers in the world. Such codes

integrate the trajectories of many charged particles, each

interacting via electromagnetic fields they themselves

produce. In anticipation of future requirements, we have

been developing algorithms for PIC codes on this new

class of multi-core nodes. As much as possible, we would

like these new algorithms to be general enough that they

would run well on most of the new emerging
architectures. We decided to start with NVIDIA GPUs,

because they are powerful, inexpensive, and widely

available.

 These GPUs consist of 12-30 multiprocessors, each

of which has 8 processor cores. The control logic

performs the same operation on 32 cores at a time. There

is a large (up to 4 GBytes) global memory, which has very

high aggregate bandwidth (up to 140 GBytes/sec), far

higher than the memory bandwidth of a traditional

processor. The memory latency (400-600 clocks) is quite

high, however. To hide this latency, the NVIDIA GPUs

support thousands of threads simultaneously, and can

switch threads in one clock period. To use this

architecture, there are two challenges to any algorithm.

The first is that the high global memory bandwidth is

achieved only when adjacent threads read adjacent
locations in memory (stride 1 access, or in the vocabulary

of NVIDIA, data coalescing). This is due to the fact that

memory is read 64 bytes at a time, and if all 64 bytes are

used, memory bandwidth is maximized. The second is

that there is no cache. However, each multiprocessor has

a small (16 KB), fast (4 clocks) memory which can be

shared by threads running on that multiprocessor. It is

best to read and write global memory only once (with

stride 1 access), storing the data that has to be read more

than once or does not have stride 1 access, in small pieces.

From this we concluded that ordered, streaming

algorithms are optimal for this and similar architectures.
 PIC codes codes have 3 major components. The

first is a deposit step, where particles contribute charge or

current field elements to grid points located near the

particle’s position. The deposit generally involves a

scatter operation. The second is a field solver, where some

subset of Maxwell’s equation is solved to obtain values of

electric and/or magnetic field points on a grid from the

charge or current grid points. The third is a particle push

step, where particles interpolate electric or magnetic fields

at a particle’s position by interpolating from nearby field

elements. The push generally involves a gather operation.
Normally, most of the time is spent in the deposit and

push steps, since there are usually many more particles

than grids. PIC codes typically have low computational

intensity. That is, the number of floating point operations

(FLOPs) compared to the number of memory accesses is

small, around 2 or 3, so that optimizing memory

operations is very important. Parallel algorithms for

distributed memory parallel computers have been

available for many years [3], and such codes have

effectively used 1,000-100,000 processors.

 PIC codes can implement a streaming algorithm by

keeping particles constantly sorted by grid. This
minimizes global memory access, since all the particles at

the same grid point read the same field elements: the field

elements need to be read only once for the entire group

(and can be stored in registers). Cache is not needed,

since gather/scatter operations are no longer required.

Most importantly, it is possible to store particles so that

the deposit and push procedures all have optimal stride 1

memory access. The challenge is whether one can sort

the particles in an optimal way.

 In this paper, we will discuss an implementation of

a streaming algorithm for a simple 2D electrostatic

__

*Work supported by Northrop Grumman, UCLA IDRE, and USDOE
(SciDAC).

WE2IOPK03 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

96

particle code on the NVIDIA GPUs. This code involves

depositing charge, solving a Poisson equation with a

spectral method, and implementing a particle push with

electric forces only. It is based on one of the codes from

the UPIC Framework [4]. An electromagnetic code

would differ only in the local operations (depositing
current in addition to charge , including magnetic forces

in the push), but not in the structure of the algorithm or its

parallelization. The entire code runs on the GPU, in

contrast to an earlier work which implemented only a

deposit algorithm [5].

ORDERED CHARGE DEPOSIT

In a traditional PIC code, the particle coordinates are

stored as (or ultimately translated to) grid units, where the

integer part of a coordinate refers to the nearest grid point,

and the deviation from the grid point is used as a weight

in the interpolation. In the charge deposit, one would first

extract the integer part of the coordinate, and then add the

weights to the nearest grid points. The most commonly

used interpolation is linear, which in 2D would involve

the four nearest grid points. Two arrays are used as the

data structures, a particle array part and a charge array q.

In Fortran, they would be declared as follows:

 dimension part(idimp,nop), q(nx+1,ny+1)

where idimp is the number of coordinates describing a

particle. In this case there are 4 coordinates,

corresponding to two positions, x and y, and two

velocities, vx and vy, respectively. The size of the grid is

given by nx and ny, and nop is the number of particles.

The charge on a particle is given by qm. The traditional

deposit loop is:

do j = 1, nop
 n = part(1,j) ! extract x grid point

 m = part(2,j) ! extract y grid point

 dxp = qm*(part(1,j) - real(n)) ! find weights

 dyp = part(2,j) - real(m)

 n = n + 1; m = m + 1 ! add 1 for Fortran

 amx = qm - dxp

 amy = 1.0 - dyp

 q(n+1,m+1) = q(n+1,m+1) + dxp*dyp ! deposit

 q(n,m+1) = q(n,m+1) + amx*dyp

 q(n+1,m) = q(n+1,m) + dxp*amy

 q(n,m) = q(n,m) + amx*amy
enddo

When particles are sorted, a new data structure is

needed. Particles can still be stored in a 2D array as

before, but they are now grouped together, and there could

be gaps between groups, since the number of particles per

grid can vary. The location of where a group of particles

at a grid starts and the number of particles at that grid are

stored in a separate array. The new data structures are

declared in Fortran as follows:

dimension part(idimp,npmax) ! npmax > nop

dimension npic(2,nx*ny)

The element npic(1,k) contains the number of particles

at grid k, and the element npic(2,k) contains the location

in the array part where this group starts. The loop over
particles now becomes a double loop as follows:

do k = 1, nx*ny ! new outer loop over grids

 joff = npic(2,k) ! memory offset

 do j = 1, npic(1,k) ! inner loop over particles at grid

 x = part(1,j+joff) ! obtain the x coordinate

 ...

 enddo

enddo

A charge deposit loop for ordered particles can be

written:

k2 = 0

do k = 1, nx*ny ! outer loop over grids

k2 = k2 + 1 ! increment cell address

sqll = 0.0; squl = 0.0 ! zero out local accumulators

sqlu = 0.0; squu = 0.0

joff = npic(2,k)

do j = 1, npic(1,k) ! loop over particles at grid

 dxp = qm*(part(1,j+joff)) ! find weights

 dyp = part(2,j+joff)

 amx = qm - dxp
 amy = 1.0 - dyp

 squu = squu + dxp*dyp ! first sum charges locally

 sqlu = sqlu + amx*dyp

 squl = squl + dxp*amy

 sqll = sqll + amx*amy

enddo

q(k2) = q(k2) + sqll ! then deposit sum in array

q(k2+1) = q(k2+1) + squl

q(k2+nx+1) = q(k2+nx+1) + sqlu

q(k2+nx+2) = q(k2+nx+2) + squu

enddo

Note that the integer part of a coordinate no longer

needs to be stored, since it is known from the grid

location. This improves accuracy with 32 bit arithmetic,

since all bits are used to store weights. The contribution

of all the particles at a grid are first summed locally into

register variables, then added to the grid. This reduces the

number of memory references needed and improves the

computation intensity of this subroutine from less than 2

to around 5.

PARALLEL CHARGE DEPOSITS

This ordered algorithm does not run safely in parallel,

however, since a particle at one grid writes to other grids,
and two threads cannot safely update the same grid at the

same time. There are two possible approaches. A

traditional approach is to implement an atomic update,

where the sum s = s + x is performed as a single,

Proceedings of ICAP09, San Francisco, CA WE2IOPK03

Computer Codes (Design, Simulation, Field Calculation)

97

uninterruptible operation by locking or protecting the

memory in some fashion. CUDA supports atomic updates

for integers, but not for floating point numbers.

Protecting memory, however, is slow and not very

portable in most computer languages. An alternative

approach is to have each thread write to its own memory
locations, which includes additional guard cells that are

added up later. Such techniques are common in

distributed memory algorithms, but require additional

memory. We shall adopt the latter approach, which is

known as domain decomposition.

 The parallel algorithm will assign each thread ngrid

grid points, which are defined in an array kcell. The

charge density array q now needs to include guard cells

for an extra row and column. If ngrid < nx, the number of

guard cells needed is ngrid+2. The worst case is ngrid =

1, and nthreads = nx*ny, when 3 guard cells are needed

for each grid. These new data structures are declared in
Fortran as follows:

dimension q(2*ngrid+2,nthreads)

dimension kcell(2,nthreads)

The element kcell(1,kth) contains the initial grid index

and kcell(2,kth) contains the final grid index for thread

kth.

For a conventional processor, the parallelization can be

expressed by adding an OpenMP style outer loop:

!$OMP PARALLEL

!$OMP DO

do kth = 1, nthreads ! parallel loop over threads kth

kmin = kcell(1,kth) ! minimum cell number for thread

kmax = kcell(2,kth) ! maximum cell number for thread

ngrid = kmax - kmin + 1 ! number of cells for thread

k2 = 0

 do k = kmin, kmax

! charge deposit loop for ordered particles as previously

shown

 q(k2,kth) = q(k2,kth) + sqll ! deposit sum in array

 q(k2+1,kth) = q(k2+1,kth) + squl

 q(k2+ngrid+1,kth) = q(k2+ngrid+1,kth) + sqlu

 q(k2+ngrid+2,kth) = q(k2+ngrid+2,kth) + squu

 enddo

enddo

!$OMP END DO

!$OMP END PARALLEL

This algorithm will run correctly in parallel. However,

it will not run optimally on the GPU. The reason is that

adjacent threads do not read adjacent locations in memory

(stride 1 access is not maintained). To achieve this, we

must declare the arrays so that the thread index is the first

dimension in Fortran arrays (in C, the last dimension):

dimension q(nthreads,2*ngrid+2), kcell(nthreads,2)

More importantly, we also need to partition the particle

array and its associated data descriptor by thread index as

well. We shall also assign the same number of grids to

each thread:

dimension part(nthreads,idimp,npmax/nthreads)

dimension npic(nthreads,2,ngrid)

Other than reorganizing the data with the new partition,

the algorithm remains the same.

FIELD SOLVER

The field solver used in this test code solved Poisson’s

equation, using spectral methods and making use of

CUDA’s CUFFT library. The algorithm has three steps.

First perform a real to complex 2D FFT on the charge

density q. Next, multiply the complex charge density qk

by the quantity -ik/k2 to obtain the complex electric field
fk. Finally, perform a complex to real 2D FFT to obtain

the electric field f in real space.

 We decided to use the cufftExecC2C function which

performs multiple 1D complex to complex FFTs, and

build our own 2D real to complex FFT using a well

known algorithm [6]. The CUDA function requires the

data to be packed with no gaps between elements. Since

the input charge density array has some of the data in

guard cells, we add the guard cells as we copy to a

contiguous array. If we choose the parallel loop index to

correspond to the index of the output array, this operation
can be safely run in parallel. The output of this operation

is the form:

complex, dimension q(nx/2,ny)

Once the data is copied, we perform multiple FFTs in x

for each y. We then transpose the data, while modifying it

as required by the algorithm[6]. This transpose has stride

1 only on the input. NVIDIA has examples of how to

improve this, but so little time was used here, we did not

do so. Finally, we perform multiple FFTs in y for each x.
The result is an complex array qk of the form:

complex, dimension qk(ny,nx/2+1)

The field solver calculates the two component electric

field fk in fourier space from qk, and the operation is

reversed to obtain the 2 component electric field in real

space:

complex, dimension fk(ny,2,nx/2+1)

complex, dimension f(nx/2,2,ny)

The final step is to create an electric field array with

guard cells, described next.

WE2IOPK03 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

98

PARALLEL PARTICLE PUSH

The particle push integrates Newton’s equation of

motion using a leap-frog scheme:

 v(t+dt/2) = v(t-dt/2) + f(x(t))*dt

 x(t+dt) = x(t) + v(t+dt/2)*dt

where dt is the time step, and f(x(t)) is the force at the

particle’s position, found by interpolation. The push

subroutine is structured the same as the deposit. To

maintain stride 1 memory access, the electric field is

partitioned just like the charge density:

f(nthreads,2,2*ngrid+2)

The partitioning is done by the field solver as its final

step. The 8 components needed to interpolate the electric

field for the group of particles at a grid are read once and

stored in register variables, then reused by all the particles
in the group. The inner loop of the push subroutine is as

follows:

do k = 1, ngrid

 k2 = k2 + 1

 fxll = f(kth,1,k2) ! read forces

 fyll = f(kth,2,k2)

 fxul = f(kth,1,k2+1)

 fyul = f(kth,2,k2+1)

 fxlu = f(kth,1,k2+ngrid+1)

 fylu = f(kth,2,k2+ngrid+1)
 fxuu = f(kth,1,k2+ngrid+2)

 fyuu = f(kth,2,k2+ngrid+2)

 joff = npic(kth,2,k)

 do j = 1, npic(kth,1,k)) ! loop over particles at grid

 dxp = part(kth,1,j+joff) ! obtain coordinates

 dyp = part(kth,2,j+joff)

 vx = part(kth,3,j+joff)

 vy = part(kth,4,j+joff)

 amx = 1.0 – dxp

 amy = 1.0 - dyp ! find acceleration

 dx = dyp*(dxp*fxuu + amx*fxlu)
 + amy*(dxp*fxul + amx*fxll)

 dy = dyp*(dxp*fyuu + amx*fylu)

 + amy*(dxp*fyul + amx*fyll)

 vx = vx + qtm*dx ! update coordinates

 vy = vy + qtm*dy

 dx = dxp + vx*dt

 dy = dyp + vy*dt

 part(kth,1,j+joff) = dx ! write coordinates

 part(kth,2,j+joff) = dy

 part(kth,3,j+joff) = vx

 part(kth,4,j+joff) = vy

 enddo
enddo

PARALLEL PARTICLE SORTING

After the particles have been pushed, they may need to

be placed in a new grid group and location in memory.

We have tried about a dozen algorithms, and finally

selected one which appeared to be best. This algorithm

assumes that most particles remain in the group, in which

case they are written to the same location they had

originally. This maintains stride 1 memory access as

much as possible.
 Within a thread, the groups are processed left to

right. If a particle is going to a group outside the thread,

the particle coordinates and destination group number are

written to a message buffer owned by the thread. In

addition, the location of the hole created by the departing

particle in the original group is recorded in a hole array.

If a particle is going to a group within the thread, there are

two possibilities. For a particle going to a group to the

right (which has not yet been processed), it is temporarily

buffered at the end of the particle array in the destination

group, and the location of the hole in the original group is

recorded. Once a group has been processed, any holes in
the group are filled from the temporarily buffered

particles, starting from the last written particle and hole.

Finally, if a particle is going to a group to the left (which

has already been processed), it is placed either in a hole, if

there is one, or added to the end of the group of particles.

 Once all the particles are processed (there is an

implicit synchronization point here), each thread

examines the message buffers created by the other threads

to see if any particles belong in this thread. To optimize

this search, an array icell is created, which contains for

each thread, the index of other possible threads to search.
For linear interpolation and a uniform partition, this

number is normally 8. The array icell changes whenever

the partition described by the array kcell changes. The

incoming particles are either placed in a hole, if there is

one, or added to the end of the appropriate group. Finally,

if any holes in a group are left, they are filled with

particles from the end of the group.

 For particles leaving a thread group, this algorithm

is very similar to the message-passing schemes used by

distributed memory PIC codes [3,7].

PERFORMANCE RESULTS

Porting this code to the GPU required first translating
six (kernel) subroutines into C, and replacing the loop

over threads

for (kth = 0; kth < nthreads; kth++)

with a special CUDA construct:

kth = blockIdx.x*blockDim.x+threadIdx.x;

In addition, memory had to be allocated on the GPU,

and initial data copied from the host. Finally, wrapper

functions were written to enable the kernel subroutines to
be called from the main Fortran code. At the end of the

simulation, the final charge density array was copied to be

host to check for correctness.

Proceedings of ICAP09, San Francisco, CA WE2IOPK03

Computer Codes (Design, Simulation, Field Calculation)

99

 The following benchmarks were run on a Macintosh

Pro, with a 2.66 GHz Intel Xeon W3520(Nehalem) host

and a C1060 Tesla card. Because Mac OS does not

support the Tesla card, we installed the Fedora 11 Linux

operating system on this hardware. The benchmark

application had a 256x512 grid and 4,718,592 particles,

with a timestep of pdt=0.025. It was run in single

precision, and the time reported is the time per particle per

time step. For the benchmark, up to 131,072 threads were

possible. However, it turned out that the optimal result

was obtained for 8,192 threads (so that each thread had 16
grids), with 128 threads/multiprocessor.

 Intel Nehalem Nvidia Tesla Speedup

Deposit: 8.2 nsec. 0.16 nsec. 51

Push: 19.9 nsec. 0.56 nsec. 36

Sort: - 1.30 nsec. -

Total: 30.0 nsec. 2.27 nsec. 13

The overall speedup for the entire code was about 13.

Most of the time was spent in the sorting step, particularly

handling particles moving from one thread group to

another. The field solver consumed only a small part of
the total time in both cases. It should be noted that the

new algorithm is more accurate in single precision than

the original algorithm, as explained in the Ordered Charge

Deposit section .

DISCUSSION

This version of the PIC code made use of global

memory only. Access to global memory is the slowest

part of the hardware, and is important to optimize that

first. It is a very general algorithm and should run on any

processor. The charge and push subroutines improved

extremely well, with performance within a factor of 2 of

the memory bandwidth limit. Clearly, the sorting step
needs the most attention. We expect to improve the

algorithm in the future by making use of faster local

memories. We were somewhat surprised that we could

effectively use distributed memory algorithms on such a

device, in avoiding data conflicts and maintaining stride 1

memory access. We were impressed that using CUDA

was so simple.

 The 2D code used for development here is

challenging because there are few operations and the

overall computational intensity with the new algorithm

improves only from 2 to 4 times. Our target application,

however, is a 3D electromagnetic code, and our estimate

is that the computational intensity with the new algorithm
should improve from 2 to 30 times, so we expect much

better results there. The sorting, even if not improved,

should become relatively less important.

REFERENCES

[1] Charles K. Birdsall and A. Bruce Langdon, Plasma
Physics via Computer Simulation [McGraw-Hill,
New York, 1885].

[2] Roger W. Hockney and James W. Eastwood,
Computer Simulation Using Particles [McGraw-Hill,
New York, 1981].

[3] P. C. Liewer and V. K. Decyk, “A General Concurrent
Algorithm for Plasma Particle-in-Cell Codes,” J.
Computational Phys. 85, 302 (1989).

[4] V. K. Decyk, “UPIC: A framework for massively
parallel particle-in-cell codes,” Computer Phys.
Comm. 177, 95 (2007).

[5] P G. Stanchev, W. Dorland, and N. Gumerov, “Fast
parallel Particle-to-Grid interpolation for plasma PIC
simulations on the GPU,” J. Parallel Distrib. Comput.
68, 1339 (2008).

[6] W. H. Press, S. A. Tekolsky, W. T. Vetterling, and B.
P. Flannery, Numerical Recipes in Fortran
[Cambridge University Press, 1986], p. 504.

[7] P. M. Lyster, P. C. Liewer, R. D. Ferraro, and V. K.
Decyk, “Implementation and Characterization of
Three-Dimensional Particle-in-Cell Codes on
Multiple-Instruction-Multiple-Data Parallel
Supercomputers,” Computers in Physics 9, 420
(1995).

WE2IOPK03 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

100

