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Abstract 

   New emerging multi-core technologies can achieve high 
performance, but algorithms often need to be redesigned 

to make effective use of these processors.  We will 

describe a new approach to Particle-in-Cell (PIC) codes 

and discuss its application to Graphical Processing Units.  

INTRODUCTION 

High Performance Computing (HPC) has been 

dominated for the last 15 years by distributed memory 

parallel computers and the Message-Passing Interface 

(MPI) programming paradigm.  The computational nodes 

have been relatively simple, with only a few processing 

cores.  This computational model appears to be reaching a 

limit, with several hundred thousand simple cores in the 
IBM Blue Gene.  The future computational paradigm will 

likely consist of much more complex nodes, such as 

Graphical Processing Units (GPUs) or Cell Processors, 

which can have hundreds of processing cores, with 

different and still evolving programming paradigms, such 

as NVIDIA’s CUDA.  One anticipates that the next 

generation HPC computers, unlike Blue Gene, will consist 

of a relatively small number (<1,000) nodes, each of 

which will contain hundreds of cores.  High performance 

on the node will in most cases require new algorithms.  

Between nodes, however, it is likely that MPI will 

continue to be effective. 
      Particle-in-Cell (PIC) codes [1-2] are one of the 

most important codes in plasma physics and other 

sciences, and use substantial computer time at some of the 

largest supercomputer centers in the world.  Such codes 

integrate the trajectories of many charged particles, each 

interacting via electromagnetic fields they themselves 

produce.  In anticipation of future requirements, we have 

been developing algorithms for PIC codes on this new 

class of multi-core nodes.  As much as possible, we would 

like these new algorithms to be general enough that they 

would run well on most of the new emerging 
architectures.  We decided to start with NVIDIA GPUs, 

because they are powerful, inexpensive, and widely 

available. 

     These GPUs consist of 12-30 multiprocessors, each 

of which has 8 processor cores.  The control logic 

performs the same operation on 32 cores at a time.  There 

is a large (up to 4 GBytes) global memory, which has very 

high aggregate bandwidth (up to 140 GBytes/sec), far 

higher than the memory bandwidth of a traditional 

processor.  The memory latency (400-600 clocks) is quite 

high, however.  To hide this latency, the NVIDIA GPUs 

support thousands of threads simultaneously, and can 

switch threads in one clock period.  To use this 

architecture, there are two challenges to any algorithm.  

The first is that the high global memory bandwidth is 

achieved only when adjacent threads read adjacent 
locations in memory (stride 1 access, or in the vocabulary 

of NVIDIA, data coalescing).  This is due to the fact that 

memory is read 64 bytes at a time, and if all 64  bytes are 

used, memory bandwidth is maximized.  The second is 

that there is no cache.  However, each multiprocessor has 

a small (16 KB), fast (4 clocks) memory which can be 

shared by threads running on that multiprocessor.  It is 

best to read and write global memory only once (with 

stride 1 access), storing the data that has to be read more 

than once or does not have stride 1 access, in small pieces.  

From this we concluded that ordered, streaming 

algorithms are optimal for this and similar architectures. 
      PIC codes codes have 3 major components.  The 

first is a deposit step, where particles contribute charge or 

current field elements to grid points located near the 

particle’s position.  The deposit generally involves a 

scatter operation. The second is a field solver, where some 

subset of Maxwell’s equation is solved to obtain values of 

electric and/or magnetic field points on a grid from the 

charge or current grid points.  The third is a particle push 

step, where particles interpolate electric or magnetic fields 

at a particle’s position by interpolating from nearby field 

elements.  The push generally involves a gather operation.  
Normally, most of the time is spent in the deposit and 

push steps, since there are usually many more particles 

than grids.  PIC codes typically have low computational 

intensity.  That is, the number of floating point operations 

(FLOPs) compared to the number of memory accesses is 

small,  around 2 or 3, so that optimizing memory 

operations is very important.   Parallel algorithms for 

distributed memory parallel computers have been 

available for many years [3], and such codes have 

effectively used 1,000-100,000 processors. 

      PIC codes can implement a streaming algorithm by 

keeping particles constantly sorted by grid.  This 
minimizes global memory access, since all the particles at 

the same grid point read the same field elements:  the field 

elements need to be read only once for the entire group 

(and can be stored in registers).  Cache is not needed, 

since gather/scatter operations are no longer required.  

Most importantly, it is possible to store particles so that 

the deposit and push procedures all have optimal stride 1 

memory access.  The challenge is whether one can sort 

the particles in an optimal way. 

      In this paper, we will discuss an implementation of 

a streaming algorithm for a simple 2D electrostatic 
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particle code on the NVIDIA GPUs.  This code involves 

depositing charge, solving a Poisson equation with a 

spectral method, and implementing a particle push with 

electric forces only.   It is based on one of the codes from 

the UPIC Framework [4].  An electromagnetic code 

would differ only in the local operations (depositing 
current in addition to charge , including magnetic forces 

in the push), but not in the structure of the algorithm or its 

parallelization.  The entire code runs on the GPU, in 

contrast to an earlier work which implemented only a 

deposit algorithm [5]. 

 

ORDERED CHARGE DEPOSIT 

In a traditional PIC code, the particle coordinates are 

stored as (or ultimately translated to) grid units, where the 

integer part of a coordinate refers to the nearest grid point, 

and the deviation from the grid point is used as a weight 

in the interpolation.  In the charge deposit, one would first 

extract the integer part of the coordinate, and then add the 

weights to the nearest grid points.  The most commonly 

used interpolation is linear, which in 2D would involve 

the four nearest grid points.   Two arrays are used as the 

data structures, a particle array part and a charge array q.  

In Fortran, they would be declared as follows: 
 

  dimension part(idimp,nop), q(nx+1,ny+1) 

 

where idimp is the number of coordinates describing a 

particle.  In this case there are 4 coordinates, 

corresponding to two positions, x and y, and two 

velocities, vx and vy, respectively.  The size of the grid is 

given by nx and ny, and nop is the number of particles.  

The charge on a particle is given by qm.  The traditional 

deposit loop is: 

 

do j = 1, nop 
   n = part(1,j)                     ! extract x grid point 

   m = part(2,j)                    ! extract y grid point 

   dxp = qm*(part(1,j) - real(n))   ! find weights 

   dyp = part(2,j) - real(m) 

   n = n + 1;  m = m + 1               ! add 1 for Fortran 

   amx = qm - dxp 

   amy = 1.0 - dyp 

   q(n+1,m+1) = q(n+1,m+1) + dxp*dyp     ! deposit  

   q(n,m+1) = q(n,m+1) + amx*dyp 

   q(n+1,m) = q(n+1,m) + dxp*amy 

   q(n,m) = q(n,m) + amx*amy 
enddo 

 

When particles are sorted, a new data structure is 

needed.  Particles can still be stored in a 2D array as 

before, but they are now grouped together, and there could 

be gaps between groups, since the number of particles per 

grid can vary.  The location of where a group of particles 

at a grid starts and the number of particles at that grid are 

stored in a separate array.  The new data structures are 

declared in Fortran as follows: 

 

dimension part(idimp,npmax)     ! npmax > nop 

dimension npic(2,nx*ny) 

 

The element npic(1,k) contains the number of particles 

at grid k, and the element npic(2,k) contains the location 

in the array part where this group starts.  The loop over 
particles now becomes a double loop as follows: 

 

do k = 1, nx*ny           ! new outer loop over grids 

   joff = npic(2,k)         ! memory offset 

   do j = 1, npic(1,k)    ! inner loop over particles at grid 

   x = part(1,j+joff)      ! obtain the x coordinate 

   ... 

   enddo 

enddo 

 

A charge deposit loop for ordered particles can be 

written: 
 

k2 = 0 

do k = 1, nx*ny                 ! outer loop over grids 

k2 = k2 + 1                        ! increment cell address 

sqll = 0.0; squl = 0.0          ! zero out local accumulators 

sqlu = 0.0; squu = 0.0 

joff = npic(2,k) 

do j = 1, npic(1,k)              ! loop over particles at grid 

   dxp = qm*(part(1,j+joff))     ! find weights 

   dyp = part(2,j+joff) 

   amx = qm - dxp 
   amy = 1.0 - dyp 

   squu = squu + dxp*dyp       ! first sum charges locally 

   sqlu = sqlu + amx*dyp 

   squl = squl + dxp*amy 

   sqll = sqll + amx*amy 

enddo 

q(k2) = q(k2) + sqll            ! then deposit sum in array 

q(k2+1) = q(k2+1) + squl 

q(k2+nx+1) = q(k2+nx+1) + sqlu 

q(k2+nx+2) = q(k2+nx+2) + squu 

enddo 

 
Note that the integer part of a coordinate no longer 

needs to be stored, since it is known from the grid 

location.  This improves accuracy with 32 bit arithmetic, 

since all bits are used to store weights.  The contribution 

of all the particles at a grid are first summed locally into 

register variables, then added to the grid.  This reduces the 

number of memory references needed and improves the 

computation intensity of this subroutine from less than 2 

to around 5. 

PARALLEL CHARGE DEPOSITS 

This ordered algorithm does not run safely in parallel, 

however, since a particle at one grid writes to other grids, 
and two threads cannot safely update the same grid at the 

same time.  There are two possible approaches.  A 

traditional approach is to implement an atomic update, 

where the sum s = s + x is performed as a single, 
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uninterruptible operation by locking or protecting the 

memory in some fashion.  CUDA supports atomic updates 

for integers, but not for floating point numbers.  

Protecting memory, however, is slow and not very 

portable in most computer languages.  An alternative 

approach is to have each thread write to its own memory 
locations, which includes additional guard cells that are 

added up later.  Such techniques are common in 

distributed memory algorithms, but require additional 

memory.  We shall adopt the latter approach, which is 

known as domain decomposition. 

      The parallel algorithm will assign each thread ngrid 

grid points, which are defined in an array kcell.  The 

charge density array q now needs to include guard cells 

for an extra row and column.  If ngrid < nx, the number of 

guard cells needed is ngrid+2.  The worst case is ngrid = 

1, and nthreads = nx*ny, when 3 guard cells are needed 

for each grid.   These new data structures are declared in 
Fortran as follows: 

 

dimension q(2*ngrid+2,nthreads) 

dimension kcell(2,nthreads) 

 

The element kcell(1,kth) contains the initial grid index 

and kcell(2,kth) contains the final grid index for thread 

kth. 

 

For a conventional processor, the parallelization can be 

expressed by adding an OpenMP style outer loop: 
 

!$OMP PARALLEL 

!$OMP DO 

do kth = 1, nthreads   ! parallel loop over threads kth 

kmin = kcell(1,kth)    ! minimum cell number for thread 

kmax = kcell(2,kth)   ! maximum cell number for thread 

ngrid = kmax - kmin + 1      ! number of cells for thread 

k2 = 0 

   do k = kmin, kmax 

 

! charge deposit loop for ordered particles as previously 

shown 
 

   q(k2,kth) = q(k2,kth) + sqll       ! deposit sum in array 

   q(k2+1,kth) = q(k2+1,kth) + squl 

   q(k2+ngrid+1,kth) = q(k2+ngrid+1,kth) + sqlu 

   q(k2+ngrid+2,kth) = q(k2+ngrid+2,kth) + squu 

   enddo 

enddo 

!$OMP END DO 

!$OMP END PARALLEL 

 

 
This algorithm will run correctly in parallel.  However, 

it will not run optimally on the GPU.  The reason is that 

adjacent threads do not read adjacent locations in memory 

(stride 1 access is not maintained).  To achieve this, we 

must declare the arrays so that the thread index is the first 

dimension in Fortran arrays (in C, the last dimension): 

 

dimension q(nthreads,2*ngrid+2), kcell(nthreads,2) 

 

More importantly, we also need to partition the particle 

array and its associated data descriptor by thread index as 

well.  We shall also assign the same number of grids to 

each thread: 
 

dimension part(nthreads,idimp,npmax/nthreads) 

dimension npic(nthreads,2,ngrid) 

 

Other than reorganizing the data with the new partition, 

the algorithm remains the same. 

FIELD SOLVER 

The field solver used in this test code solved Poisson’s 

equation, using spectral methods and making use of 

CUDA’s CUFFT library.  The algorithm has three steps.  

First perform a real to complex 2D FFT on the charge 

density q.  Next, multiply the complex charge density qk 

by the quantity -ik/k2 to obtain the complex electric field 
fk. Finally, perform a complex to real 2D FFT to obtain 

the electric field f in real space. 

      We decided to use the cufftExecC2C function which 

performs multiple 1D complex to complex FFTs, and 

build our own 2D real to complex FFT using a well 

known algorithm [6].  The CUDA function requires the 

data to be packed with no gaps between elements.   Since 

the input charge density array has some of the data in 

guard cells, we add the guard cells as we copy to a 

contiguous array.  If we choose the parallel loop index to 

correspond to the index of the output array, this operation 
can be safely run in parallel.  The output of this operation 

is the form: 

 

complex, dimension q(nx/2,ny) 

 

Once the data is copied, we perform multiple FFTs in x 

for each y.  We then transpose the data, while modifying it 

as required by the algorithm[6].  This transpose has stride 

1 only on the input.  NVIDIA has examples of how to 

improve this, but so little time was used here, we did not 

do so.  Finally, we perform multiple FFTs in y for each x.  
The result is an complex array qk of the form: 

 

complex, dimension qk(ny,nx/2+1)  

 

The field solver calculates the two component electric 

field fk in fourier space from qk, and the operation is 

reversed to obtain the 2 component electric field in real 

space: 

 

complex, dimension fk(ny,2,nx/2+1) 

complex, dimension f(nx/2,2,ny) 

 
The final step is to create an electric field array with 

guard cells, described next. 
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PARALLEL PARTICLE PUSH 

The particle push integrates Newton’s equation of 

motion using a leap-frog scheme: 

 

    v(t+dt/2) = v(t-dt/2) + f(x(t))*dt 

    x(t+dt) = x(t) + v(t+dt/2)*dt 

 
where dt is the time step, and  f(x(t)) is the force at the 

particle’s position, found by interpolation.  The push 

subroutine is structured the same as the deposit.  To 

maintain stride 1 memory access, the electric field is 

partitioned just like the charge density: 

 

f(nthreads,2,2*ngrid+2) 

 

The partitioning is done by the field solver as its final 

step.  The 8 components needed to interpolate the electric 

field for the group of particles at a grid are read once and 

stored in register variables, then reused by all the particles 
in the group.  The inner loop of the push subroutine is as 

follows: 

 

do k = 1, ngrid 

   k2 = k2 + 1 

   fxll = f(kth,1,k2)                            ! read forces 

   fyll = f(kth,2,k2) 

   fxul = f(kth,1,k2+1) 

   fyul = f(kth,2,k2+1) 

   fxlu = f(kth,1,k2+ngrid+1) 

   fylu = f(kth,2,k2+ngrid+1) 
   fxuu = f(kth,1,k2+ngrid+2) 

   fyuu = f(kth,2,k2+ngrid+2) 

   joff = npic(kth,2,k) 

   do j = 1, npic(kth,1,k) )     ! loop over particles at grid 

      dxp = part(kth,1,j+joff)              ! obtain coordinates 

      dyp = part(kth,2,j+joff) 

      vx = part(kth,3,j+joff) 

      vy = part(kth,4,j+joff) 

      amx = 1.0 – dxp 

      amy = 1.0 - dyp                         ! find acceleration 

      dx = dyp*(dxp*fxuu + amx*fxlu)  
                      + amy*(dxp*fxul + amx*fxll) 

      dy = dyp*(dxp*fyuu + amx*fylu) 

                      + amy*(dxp*fyul + amx*fyll) 

      vx = vx + qtm*dx                      ! update coordinates 

      vy = vy + qtm*dy 

      dx = dxp + vx*dt 

      dy = dyp + vy*dt 

      part(kth,1,j+joff) = dx               ! write coordinates 

      part(kth,2,j+joff) = dy 

      part(kth,3,j+joff) = vx 

      part(kth,4,j+joff) = vy 

   enddo 
enddo 

PARALLEL PARTICLE SORTING 

After the particles have been pushed, they may need to 

be placed in a new grid group and location in memory.  

We have tried about a dozen algorithms, and finally 

selected one which appeared to be best.  This algorithm 

assumes that most particles remain in the group, in which 

case they are written to the same location they had 

originally.  This maintains stride 1 memory access as 

much as possible. 
      Within a thread, the groups are processed left to 

right.  If a particle is going to a group outside the thread, 

the particle coordinates and destination group number are 

written to a message buffer owned by the thread.  In 

addition, the location of the hole created by the departing 

particle in the original group is recorded in a hole array.  

If a particle is going to a group within the thread, there are 

two possibilities.  For a particle going to a group to the 

right (which has not yet been processed), it is temporarily 

buffered at the end of the particle array in the destination 

group, and the location of the hole in the original group is 

recorded.  Once a group has been processed, any holes in 
the group are filled from the temporarily buffered 

particles, starting from the last written particle and hole.  

Finally, if a particle is going to a group to the left (which 

has already been processed), it is placed either in a hole, if 

there is one, or added to the end of the group of particles. 

       Once all the particles are processed (there is an 

implicit synchronization point here), each thread 

examines the message buffers created by the other threads 

to see if any particles belong in this thread.   To optimize 

this search, an array icell is created, which contains for 

each thread, the index of other possible threads to search.  
For linear interpolation and a uniform partition, this 

number is normally 8.  The array icell changes whenever 

the partition described by the array kcell changes.  The 

incoming particles are either placed in a hole, if there is 

one, or added to the end of the appropriate group.  Finally, 

if any holes in a group are left, they are filled with 

particles from the end of the group. 

      For particles leaving a thread group, this algorithm 

is very similar to the message-passing schemes used by 

distributed memory PIC codes [3,7]. 

PERFORMANCE RESULTS 

Porting this code to the GPU required first translating 
six (kernel) subroutines into C, and replacing the loop 

over threads  

 

for (kth = 0; kth < nthreads; kth++) 

 

with a special CUDA construct: 

 

kth = blockIdx.x*blockDim.x+threadIdx.x; 

 

In addition, memory had to be allocated on the GPU, 

and initial data copied from the host.   Finally, wrapper 

functions were written to enable the kernel subroutines to 
be called from the main Fortran code.  At the end of the 

simulation, the final charge density array was copied to be 

host to check for correctness. 
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      The following benchmarks were run on a Macintosh 

Pro, with a 2.66 GHz Intel Xeon W3520(Nehalem) host 

and a C1060 Tesla card.  Because Mac OS does not 

support the Tesla card, we installed the Fedora 11 Linux 

operating system on this hardware.  The benchmark 

application had a 256x512 grid and 4,718,592 particles, 

with a timestep of pdt=0.025.  It was run in single 

precision, and the time reported is the time per particle per 

time step.  For the benchmark, up to 131,072 threads were 

possible.  However, it turned out that the optimal result 

was obtained for 8,192 threads (so that each thread had 16 
grids), with 128 threads/multiprocessor. 

 

         Intel Nehalem   Nvidia Tesla    Speedup 

Deposit:    8.2 nsec.        0.16 nsec.       51 

Push:      19.9 nsec.        0.56 nsec.       36 

Sort:            -                 1.30 nsec.        - 

Total:      30.0 nsec.       2.27 nsec.        13 

 

The overall speedup for the entire code was about 13.  

Most of the time was spent in the sorting step, particularly 

handling particles moving from one thread group to 

another.  The field solver consumed only a small part of 
the total time in both cases.  It should be noted that the 

new algorithm is more accurate in single precision than 

the original algorithm, as explained in the Ordered Charge 

Deposit section . 

DISCUSSION 

This version of the PIC code made use of global 

memory only.  Access to global memory is the slowest 

part of the hardware, and is important to optimize that 

first.  It is a very general algorithm and should run on any 

processor.  The charge and push subroutines improved 

extremely well, with performance within a factor of 2 of 

the memory bandwidth limit.  Clearly, the sorting step 
needs the most attention.  We expect to improve the 

algorithm in the future by making use of faster local 

memories.   We were somewhat surprised that we could 

effectively use distributed memory algorithms on such a 

device, in avoiding data conflicts and maintaining stride 1 

memory access.  We were impressed that using CUDA 

was so simple. 

      The 2D code used for development here is 

challenging because there are few operations and the 

overall computational intensity with the new algorithm 

improves only from 2 to 4 times.  Our target application, 

however, is a 3D electromagnetic code, and our estimate 

is that the computational intensity with the new algorithm 
should improve from 2 to 30 times, so we expect much 

better results there.  The sorting, even if not improved, 

should become relatively less important. 
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