Proceedings of ICAP(09, San Francisco, CA

WE2IOPKO01

HARD- AND SOFTWARE-BASED ACCELERATION TECHNIQUES FOR
FIELD COMPUTATION

Martin Schauer#, Peter Thoma"
#CST of America, San Mateo, CA, United States
" CST AG, Darmstadt, Germany

Abstract

Due to a high demand in more realistic graphics rendering
for computer games and professional applications,
commercial, off-the-shelf graphics processing units
(GPU) increased their functionality over time. Recently
special application programming interfaces (API) allow
programming these devices for general purpose
computing. This paper will discuss the advantages of this
hardware platform for time domain simulations using the
Finite-Integration-Technique  (FIT). Examples will
demonstrate typical accelerations over conventional
central processing units (CPU).

Next to this hardware based accelerations for simulations
also software based accelerations are discussed. A
distributed computing scheme can be used to accelerate
multiple independent simulation runs. For memory
intense simulations the established Message Passing
Interface (MPI) protocol enables distribution of one
simulation to a compute cluster with distributed memory
access. Finally, the FIT framework also allows special
algorithmic improvements for the treatment of curved
shapes using the perfect boundary approximation (PBA),
which speeds up simulations.

INTRODUCTION

Simulation performance is a frequently discussed topic
since users of simulation software want to achieve faster
time-to-market in order to gain a competitive advantage.
As a prerequisite for the following studies, “performance”
needs to be defined first and includes the full design
process from the idea to the realization.

1. Pre-processing
* CAD Modeling / Workflow integration
e Parameter definition
2. Solver
*  Advanced numerical algorithms
*  High performance computing
3. Post-processing
*  Derive secondary quantities
*  Optimize parameter

It is important to note that on the solver side not only the
speed, but also the accuracy of this algorithm needs to be
taken into account.

Performance = speed * accuracy

Computer Codes (Design, Simulation, Field Calculation)

Most of the performance studies in this paper are
discussed within the FIT framework [1]. We would also
like to emphasize that the right solver choice can speed up
the simulation significantly and should therefore be
preferred, before hard- and software based acceleration
techniques are chosen.

The paper is subdivided into two parts: hardware and
software based acceleration techniques. Figure 1
illustrated how these techniques play together in [2].
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Figure 1: Overview of acceleration techniques and their hierarchy

HARDWARE ACCELERATION
TECHNIQUES

Multi-CPU/multi-core is a classical hardware acceleration
technique. In the recent years GPU computing emerged as
a competing technique. In terms of performance we need
to distinguish between algorithms with a high count of
operations per memory access and algorithms with a low
count.
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Figure 2: Simulation speed-up of the latest Intel generation CPU [3]
vs. the previous generation
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Figure 2 demonstrates the performance of a time domain
FIT simulation using the latest hardware. This algorithm
falls into the “memory-bandwidth” limited category and
therefore benefits directly from recent CPU developments
[3]. GPU computing even further accelerates this example
[4]. Figure 3 highlights the speed-up when one, two or
four GPUs are used over a reference system with the
latest generation of CPUs.
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Figure 3: Speed-up of GPU computing. Reference is the new CPU
generation [3].

Again, the speed-up is possible due to the higher memory
bandwidth on the GPU hardware platform, which allows a
greater throughput of the memory bandwidth limited
algorithm.

Frequency domain techniques on the other hand require a
matrix inversion within the solution process. This tends to
require much more floating point operations per memory
access. Therefore they benefit from multiple cores/CPUs
even on systems with lower memory bandwidth.
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Figure 4: Typical speed-up of a direct methods-of-moments (MoM)
solver vs. number of threads used on 8 core machine

Figure 4 shows the speed-up of multi core usage for a
direct methods-of-moments (MoM) solver. It can be
observed that an excellent speed-up of more than 6 on a 8
core machine can be achieved.
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SOFTWARE ACCELERATION
TECHNIQUES

The message passing interface protocol (MPI) [5] is a
standard library used for parallel processing across
multiple compute nodes via a standard interconnect
protocol, e.g. Internet Protocol (IP). It is used in [2] to
implement a Domain Decomposition scheme. Unlike the
distributed computing scheme, see figure 1, MPI
introduces some overhead in the simulation. In its time
domain implementation the nodes need to exchange
information about field components across the domain
boundaries in each time step. Therefore the cluster
computing becomes most efficient if the overhead - the
time to synchronize the nodes - is small compared to the
time to update the fields in the volume of one domain.
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Figure 5: Efficiency of MPI based cluster computing for different
discretizations vs. number of used cluster nodes

Figure 5 visualizes the efficiency of cluster computing,
when multiple compute nodes are used. In addition it
includes multiple discretizations in terms of mesh cell
count for the same example. In theory the efficiency
drops as the overhead gets larger with multiple nodes,
highlighted in blue. If the model is large enough, one can
get close to this limit, making it an effective scheme for
simulations with distributed memory.

For independent simulations, multiple computers in the
network can be used to simulate different

*  Port excitations (time-domain solver)

¢ Frequency samples (frequency domain solver)

¢ Parameter combinations during parameter sweep

or optimization

in parallel. Figure 6 illustrates the process of submitting a
simulation from the frontend machine to the main
controller. Since all the setup is done on the frontend it
detects N independent simulations and asks the main
controller for N individual jobs. The main controller
checks the status of the connected solvers and distributes
the simulations. After the solver is finished it reports back
to the main controller. The frontend at the end
automatically merges the results of the individual
simulations, in order to make this process seamless for the
user. The overall simulation performance therefore is an
almost perfect linear speed-up with the number of
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computing nodes for independent simulations. The fact
that there is no user interaction required makes this
scheme very efficient and scalable.

Frontends

Figure 6: Computers involved and nomenclature of distributed
computing

For the software/algorithmic acceleration, [2] offers an
extension to FIT, the perfect boundary approximation
(PBA) technique [6]. This conformal discretization
method circumvents the geometry approximation error in
classical finite-difference (FD) type of simulations. It
allows using a much coarser mesh in order to achieve the
same accuracy level and therefore speeds up the
simulation, while the advantages of a structured meshing
algorithm are maintained”. In addition the convergence
during mesh refinement behaves more consistent, an
important feature for any a posteriori error estimation.

SUMMARY

This paper introduced several hardware and software
acceleration techniques, in particular for electromagnetic
field computations. Figure 1 summarizes these and also
illustrates how they interact with each other for maximum
performance, e.g. cluster of GPU accelerated nodes.

As mentioned in the definition of performance the whole
process from the idea to the final simulation design needs
to be taken into account, including simulation setup and
post processing. Another important factor for the
performance is the right solver choice, e.g. time domain
or frequency domain and mesh choice, e.g. hexahedral or
tetrahedral.

Finally, the discretization method needs to be accurate
(e.g. Perfect Boundary Approximation) otherwise the
acceleration technique will only make a slow method less
slow, but never fast.

* In [2] the user is not limited to structured hexahedral meshes, but can
also use an unstructured mesh in time domain FIT simulations. This
multilevel subgridding scheme also includes the PBA extension, giving
the user full meshing flexibility and highest accuracy.
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