
A PARALLEL HYBRID LINEAR SOLVER FOR ACCELERATOR CAVITY
DESIGN

I. Yamazaki∗, X. S. Li† , and E. G. Ng‡

Lawrence Berkeley National Laboratory, Berkeley, CA 94720.
Abstract

Numerical simulations to design high-energy particle ac-
celerators give rise to large-scale ill-conditioned highly-
indefinite linear systems of equations that are becoming
increasingly difficult to solve using either a direct solver
or a preconditioned iterative solver alone. In this paper,
we describe our current effort to develop a parallel hybrid
linear solver that balances the robustness of a direct solver
with the efficiency of a preconditioned iterative solver. We
demonstrate that our hybrid solver is more robust and ef-
ficient than the existing state-of-the-art software to solve
these linear systems on a large number of processors.

INTRODUCTION

Numerical simulations to design high-energy particle
accelerators [10] give rise to large sparse linear systems
of equations that are becoming increasingly difficult to
solve using standard techniques [9]. Although signifi-
cant progress has been made in the development of high-
performance direct solvers [2, 4, 11], the dimension of
the systems that can be directly factored is limited due
to large memory requirements. Preconditioned iterative
solvers [3, 14, 16] can reduce the memory requirements,
but they often suffer from slow convergence.

To overcome these challenges, a number of parallel hy-
brid solvers have been developed based on a domain de-
composition idea called the Schur complement method [5,
6]. In this method, the unknowns in interior domains are
first eliminated using a direct method, and the remaining
Schur complement system is solved using a preconditioned
iterative method. These hybrid solvers often exhibit great
parallel performance because the interior domains can be
factored in parallel, and the direct solver is effective to fac-
tor the relatively-small interior domain. In addition, the
preconditioned iterative solver is shown to be robust to
solve the Schur complement systems, where most of the
fill occurs, in a number of applications [5, 6]. In particular,
for a symmetric positive definite system, the Schur comple-
ment has a smaller condition number than the original ma-
trix [15, Section 4.2], and fewer iterations are often needed
to solve the Schur complement system. Hence, these hy-
brid solvers have the potential to balance the robustness of
the direct solver with the efficiency of the iterative solver.

Unfortunately, for a highly-indefinite linear system from
the accelerator simulation, these existing hybrid solvers of-
ten suffer from slow convergence when solving the Schur

∗ ic.yamazaki@gmail.com
† xsli@lbl.gov
‡ egng@lbl.gov

complement system. This is true especially on a large num-
ber of processors because these solvers are designed to
achieve good scalability of time to compute the precondi-
tioners, but the quality of the preconditioner often degrades
as more processors are used.

To overcome these drawbacks, we have been developing
a new implementation of the Schur complement method
which provides the robustness and flexibility to solve large
highly-indefinite linear systems on a large number of pro-
cessors [12, 17]. In this paper, we demonstrate the effec-
tiveness of our hybrid solver to solve these linear systems
on hundreds of processors using a linear system whose di-
mension is greater than those used in our previous papers.
We also point out how our impelemtnation has been mod-
ified since the last publication in order to solve such large
linear systems with millions of unknowns.

SCHUR COMPLEMENT METHOD
The Schur complement method is a non-overlapping do-

main decomposition method, which is also referred to as
iterative substructuring. In this method, the original linear
system is first reordered into a 2 × 2 block system of the
following form:(

A11 A12

A21 A22

)(
x1
x2

)
=

(
b1
b2

)
, (1)

whereA11 andA22 respectively represent interior domains
and separators, andA12 andA21 are the interfaces between
A11 and A22. By eliminating the unknows associated with
the interior domains A11 in the bottom part of (1), we ob-
tain the block-triangular system(

A11 A12

0 S

)(
x1
x2

)
=

(
b1
b̂2

)
, (2)

where S is the Schur complement defined as

S = A22 −A21A
−1
11 A12, (3)

and b̂2 = b2 − A21A
−1
11 b1. Hence, the solution of the lin-

ear system (1) can be computed by first solving the Schur
complement system

Sx2 = b̂2, (4)

then solving the interior system

A11x1 = b1 −A12x2. (5)

Note that interior domains are independent of each other,
and A11 is a block-diagonal matrix. Hence, the relatively

Proceedings of ICAP09, San Francisco, CA TU4IODN01

Computer Codes (Design, Simulation, Field Calculation)

89



small interior domains can be efficiently factored in par-
allel using a direct solver. On the other hand, a large
amount of fill can be introduced in S. In order to reduce the
memory requirement, the Schur complement system (4) is
solved using a preconditioned iterative method. We note
that within the iterative method, the matrix-vector product
with the Schur complement S can be computed by apply-
ing the sequence of the sparse matrix operations (3) on the
vector, and hence, S does not have to be stored explicitly
for this phase of the solver.

PARALLEL IMPLEMENTATION
To obtain high-performance, our implementation takes

full advantage of the state-of-the-art software. Specifi-
cally, the 2 × 2 block system (1) is computed using PT-
SCOTCH [8], which implements a parallel nested bisec-
tion algorithm.1 Then, to compute the LU factors of the
interior domains in parallel, our hybrid solver uses either
a “1-level” or “2-level” configuration, where each inte-
rior domain is factored using either a single processor or
multiple processors, respectively. Currently, we use a se-
rial direct solver SuperLU [4] or a parallel direct solver
SuperLU DIST [11] for the 1-level or 2-level configura-
tion, respectively. To preserve the sparsity of the LU fac-
tors, each interior domain is permuted using METIS [7] or
PT-SCOTCH. Then, the Schur complement system (4) is
solved using a Krylov subspace method from PETSc [13]
combined with an ILU preconditioner. Finally, the solution
of the interior system (5) is computed using the previously
computed LU factors of the interior domains.

Since computing the ILU preconditioner of the Schur
complement is often the computational and memory bottle-
neck, we give a brief description of how the preconditioner
is computed. In our current implementation, the precondi-
tioners are the exact LU factors of a sparsified Schur com-
plement. Specifically, let us denote the `-th interior domain
and corresponding interfaces by A(`)

11 , and A(`)
12 and A(`)

21 ,
respectively, such that the coefficient matrix of the 2 × 2
block system (1) with k interior domains can be written as

(
A11 A12

A21 A22

)
=


A

(1)
11 A

(1)
12

A
(2)
11 A

(2)
12

. . .
...

A
(k)
11 A

(k)
12

A
(1)
21 A

(2)
21 . . . A

(k)
21 A22

 .

(6)
In the 1-level configuration, the `-th processor stores the
nonzeros of A(`)

11 and A
(`)
21 in row-wise order, and the

nonzeros of A(`)
12 in column-wise order. If the 2-level con-

figuration is used, then the rows of A(`)
11 and A(`)

12 , and the
columns of A(`)

21 are evenly distributed among the proces-
sors assigned to the `-th interior domain. Furthermore, the

1In the previous implementation [12], HID of HIPS [5] was used to
compute the block system using a single processor.

rows of A22 are evenly distributed among the processors
that solve the Schur complement system (4).

With the block structure (6) and the LU factorization
of the interior domain A(`)

11 , which is denoted by A(`)
11 =

L
(`)
11 U

(`)
11 ,2 the Schur complement is computed as

S = A22 −
k∑

`=1

A
(`)
21 (A

(`)
11 )

−1A
(`)
12

= A22 −
k∑

`=1

((U
(`)
11 )−T (A

(`)
21 )

T )T ((L
(`)
11 )

−1A
(`)
12 )

= A22 −
pA∑
p=1

E(`)(:, j
(p)
1 : j

(p)
2 )F (`)(j

(p)
1 : j

(p)
2 , :),

where pA is the number of processors used to solve the
whole system, E(`) = ((U

(`)
11 )−T (A

(`)
21 )

T )T , F (`) =

(L
(`)
11 )

−1A
(`)
12 , the p-th processor owns the j(p)1 -th through

j
(p)
2 -th columns of A(`)

21 and the corresponding rows of
A

(`)
12 , and E(:, j1 : j2) and F (j1 : j2, :) are the matrices

consisting of the j1-th through j2-th columns of a matrix E
and the corresponding rows of F , respectively. In other
words, after E(`) and F (`) are computed by the processors
assigned to the `-th interior domain, the j(p)1 -th through
j
(p)
2 -th columns ofE(`) and the corresponding rows of F (`)

are sent to the p-th processors. Then, the p-th processor
computes the corresponding outer-product updates of the
Schur complement S, and sends the rows of the updates
to the processor that owns the corresponding rows of A22.
Subsequently, the rows of S are evenly distributed among
the processors that solve the Schur complement system.
We note that the matrices E(`) and F (`) are computed with
regards to the sparsity of interface A(`)

21 and A(`)
12 .

In the above expression, the columns of E(`) and rows
of F (`) are distributed in the same way as those ofA(`)

21 and
A

(`)
12 , respectively. This is not necessary. In our new imple-

mentation, the matricesE(`) and F (`) are distributed to bal-
ance the computational cost to compute the outer-product
updates E(`)(:, j

(p)
1 : j

(p)
2 )F (`)(j

(p)
1 : j

(p)
2 , :) among the

processors assigned to the `-th interior domain. Further-
more, to reduce the costs, the sparsity of the matrices E(`)

and F (`) are enforced by discarding nonzeors with magni-
tudes less than a prescribed drop tolerance σ1. Hence, an
approximation S̃ to the Schur complement S is computed.

After the approximate Schur complement S̃ is computed,
it is preprocessed to enhance numerical stability, and then
its sparsity is enforced using a drop tolerance σ2. Finally,
SuperLU DIST is used to compute the LU factor of S̃,
which is used as the preconditioner. To preserve the spar-
sity of the LU factor, S̃ is permuted based on a parallel
nested bisection of the supernobal graph of S̃. See [17], for
the preprocessing techniques used on S̃.

2The matrix A
(`)
11 is scaled and permuted to enhance numerical stabil-

ity and preseve the sparsity of L(`)
11 and U

(`)
11 . For clarity, the scaling and

permutation are not shown in the expression.

TU4IODN01 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

90



NUMERICAL EXPERIMENTS

We present preliminary results of our hybrid solver to
solve a highly-indefinite linear system on hundreds of pro-
cessors. Our test matrix tdr455k is from a simulation of
an international linear collider [1, 10], and its dimension
is 2, 738, 556. To solve the Schur complement system,
we used the unrestarted GMRES from PETSc [13]. The
GMRES iteration was started with the zero vector, and the
computed solution was considered to have converged when
the `2-norm of the initial residual was reduced by at least
twelve order of magnitude. This is the solution accuracy
enforced in the actual simulations. All the experiments
were conducted on the Cray XT4 machine at the National
Energy Research Scientific Computing Center.

To demonstrate the effectiveness of our hybrid solver,
we compare its performance with that of a direct solver
SuperLU DIST [11], and that of a state-of-the-art hybrid
solver HIPS [5]. The primary difference between our hy-
brid solver and HIPS is the way the preconditioner is com-
puted for solving the Schur complement system. HIPS
computes the preconditioner based on an ILU factorization
of S̃, where the sparsity of the preconditioner is enforced
based on both numerical values and locations of nonzeros.
Specifically, the fill is allowed only between separators ad-
jacent to the same domain. Furthermore, HIPS factors each
interior domain using a single processor, and the number
of interior domains needs to be at least as large as the num-
ber of processors used to solve the whole linear system.
This allows HIPS to achieve good parallel scalability of
time to compute the prconditioner. However, for a highly-
indefinite system, we found that HIPS often suffers from
slow convergence. This was especially true on a large num-
ber of processors since a large number of interior domains
must be generated, which increases the size of the Schur
complement.

To compare the performance of our hybrid solver with
that of SuperLU DIST, Figure 1 shows the total solution
times as functions of the number of processors used to
solve the linear system. In the figure, “1-level” and “2-
level” are the two configurations of our hybrid solver,
which use a single processor and multiple processors to
factor each interior domain, respectively. In our numeri-
cal experiments with the 1-level configuration, we set the
number of interior domains to be equal to the number of
processors used to solve the linear system. On the other
hand, for the 2-level configuration, the number of interior
domains was fixed to be 16, and the processors were evenly
distributed among the interior domains.

By looking at the left plot of Figure 1, we see that the
solution time with our hybrid solver scaled better than that
with SuperLU DIST, (i.e., the hybrid solver could reduce
the solution time using up to 512 processors, while Su-
perLU DIST did not scale beyond 128 processors). Fur-
thermore, we see that the solution times with the 1-level
configuration scaled similarly to that with the 2-level con-
figuration. This is because with the small drop toler-

ances (σ1, σ2) = (10−6, 10−5), the number of GMRES
iterations was nearly independent of the number of inte-
rior domains, and GMRES converged within 20 iterations
even when the number of interior domains needed to be
increased for the 1-level configuration to run on more pro-
cessors (see Table 1). In comparison, HIPS required 151
iterations on 16 processors, and it failed to converge within
1, 000 iterations on 32 processors even though the drop tol-
erances were set to be zero. Furthermore, even when HIPS
converged, our hybrid solver solved the linear system faster
since it takes full advantage of the state-of-the art software.

Number of domains
(σ1, σ2) 16 32 64 128 256

(10−6, 10−5) 11 15 15 17 16
(10−5, 10−4) 32 60 116 205 290

Table 1: Number of iterations with our hybrid solver.

We note that larger drop tolerances reduce the memory
requirement of our hybrid solver. For example, in Figure 1,
less memory was needed in the right plot since the drop
tolerances were increased by an order of magnitude from
those in the left plot. Specifically, in the left plot, about
15% of the nonozeros were discarded from the matrices E
and F , and about 50% of the nonzeros were discarded from
the approximate Schur complement S̃. On the other hand,
in the right plot, about 30% of the nonzeros were discarded
from E and F , and about 75% of the nonzeros were dis-
carded from S̃. Unfortunately, with large drop tolerances,
the number of GMRES iterations may increase as more in-
terior domains are generated. For example with the drop
tolerance (σ1, σ2) = (10−5, 10−4), the number of itera-
tions increased from 32 to 290 when the number of interior
domains increased from 16 to 256 (see Table 1). As a re-
sult, with the 1-level configureation, the solution time did
not scale beyond 64 processors (see Figure 1). On the other
hand, with the 2-level configuration, we can increase the
number of processors while keeping the size of the Schur
complement the same. Subsequently, with the 2-level con-
figuration, the solution time was reduced using up to 256
processors in Figure 1.

Unfortunately, with the drop tolerance (σ1, σ2) =
(10−5, 10−4), the 2-level configuration could not reduce
the solution time using 512 processors from that using 256
processors (see Figure 1). This is because with the 2-level
configuration, the size of the Schur complement is fixed,
and we used only 16 processors to solve the Schur comple-
ment system even when more processors were available.
As a result, the time to solve the Schur complement system
became the dominant part of the total solution time as the
number of processors increased. However, the total solu-
tion time was still reduced from that of SuperLU DIST by
a factor of 2.3 on 512 processors.

Proceedings of ICAP09, San Francisco, CA TU4IODN01

Computer Codes (Design, Simulation, Field Calculation)

91



16 32 64 128 256 512

10
2

S
o
lu

ti
o

n
 t

im
e

 (
s
)

Number of processors

(σ
1
,σ

2
)=(10

−6
,10

−5
)

SuperLU
1−level
2−level

16 32 64 128 256 512

10
2

S
o
lu

ti
o

n
 t

im
e

 (
s
)

Number of processors

(σ
1
,σ

2
)=(10

−5
, 10

−4
)

SuperLU
1−level
2−level

Figure 1: Solution times required by SuperLU DIST and our hybrid solver.

CONCLUSIONS
For a large-scale particle accelerator simulation, solving

large highly-indefinite linear systems becomes the memory
bottleneck. We have described our current effort to address
this challenge with a new parallel hybrid solver. The pre-
liminary results have demonstrated that our hybrid solver
improves the parallel scalability of a state-of-the-art direct
solver. Furthermore, in comparison to a state-of-the-art hy-
brid solver, our hybrid solver is more robust and efficient to
solve these linear systems on a large number of processors.
As a result, our hybrid solver has the potential to enable a
large-scale particle accelerator simulation by using a large
number of processors and reducing the memory required by
a processor. We are working to improve the parallel perfor-
mance of our solver and conducting further experiments to
solve larger systems using thousands of processors.

ACKNOWLEDGMENTS
The authors thank Lie-Quan Lee at the SLAC National

Accelerator Laboratory for providing the test matrix. This
research was supported in part by the Director, Office of
Science, Office of Advanced Scientific Computing Re-
search, of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231. We used the resources at the
National Energy Research Scientific Computing Center.

REFERENCES
[1] Community Petascale Project for Accelerator Science and

Simulation (ComPASS). https://compass.fnal.gov.
[2] P. Amestoy, I. Duff, J. Koster, and J.-Y. L’Excellent. A fully

asynchronous multifrontal solver using distributed dynamic
scheduling. SIAM Journal on Matrix Analysis and Applica-
tions, 23(1):15–41, 2001.

[3] O. Axelsson. Iterative solution methods. Cambridge Uni-
versity Press, New York, 1994.

[4] J. Demmel, S. Eisenstat, J. Gilbert, X. Li, and J. Liu. A su-
pernodal approach to sparse partial pivoting. SIAM J. Matrix
Analysis and Applications, 20:720–755, 1999.

[5] J. Gaidamour and P. Henon. HIPS: a parallel hybrid di-
rect/iterative solver based on a schur complement. In Proc.
PMAA, 2008.

[6] L. Giraud, A. Haidar, and L. T. Watson. Parallel scalability
study of hybrid preconditioners in three dimensions. Paral-
lel Computing, 34:363–379, 2008.

[7] Karypis Lab, Digital Technology Center, Department of
Computer Science and Engineering, University of Minesota.
METIS - Serial Graph Partitioning and Fill-reducing Matrix
Ordering. http://glaros.dtc.umn.edu/gkhome/metis/metis.

[8] Laboratoire Bordelais de Recherche en Informatique
(LaBRI). SCOTCH - Software package and libraries for
graph, mesh and hypergraph partitioning, static mapping,
and parallel and sequential sparse matrix block ordering.
http://www.labri.fr/perso/pelegrin/scotch/.

[9] L.-Q. Lee, L. Ge, M. Kowalski, Z. Li, C.-K. Ng, G. Schuss-
man, M. Wolf, and K. Ko. Solving large sparse linear sys-
tems in end-to-end accelerator structure simulations. Par-
allel and Distributed Processing Symposium, International,
1:8a, 2004.

[10] L.-Q. Lee, Z. Li, C.-K. Ng, and K. Ko. Omega3P: A parallel
finite-element eigenmode analysis code for accelerator cav-
ities. Technical Report SLAC-PUB-13529, Stanford Linear
Accelerator Center, 2009.

[11] X. Li and J. Demmel. SuperLU DIST: A scalable
distributed-memory sparse direct solver for unsymmet-
ric linear systems. ACM Trans. Mathematical Software,
29(2):110–140, 2003.

[12] X. Li, M. Shao, I. Yamazaki, and E. Ng. Factorization-based
sparse solvers and preconditioners. In Journal of Physics:
Conference Series, SciDAC 2009.

[13] Mathematics and Computer Science Division, Argonne Na-
tional Laboratory. The portable, extensible, toolkit for sci-
entific computation (PETSc). www.mcs.anl.gov/petsc.

[14] Y. Saad. Iterative methods for sparse linear systems. SIAM,
Philadelphia, 2004.

[15] B. Smith, P. Bjorstad, and W. Gropp. Domain Decomposi-
tion. Parallel Multilevel Methods for Elliptic Partial Differ-
ential Equations. Cambridge University Press, New York,
1996.

[16] H. van der Vorst. Iterative Krylov methods for large linear
systems. Cambridge University Press, New York, 2003.

[17] I. Yamazaki, X. Li, and E. Ng. Preconditioning schur com-
plement systems of highly-indefinite linear systems for a
parallel hybrid solver. In Submitted to the proceedings of
the international conference on preconditioning techniques
for scientific and industrial applications, 2009.

TU4IODN01 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

92


