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Abstract

Numerical simulations are frequently used in the de-
sign, optimization and commissioning phase of accelera-
tor components. Strict requirements on the accuracy as
well as the complex structure of such devices lead to chal-
lenges regarding the numerical simulations in 3D. In order
to capture all relevant details of the geometry and possibly
strongly localized electromagnetic effects, large numerical
models are often unavoidable. The use of parallelization
strategies in combination with higher-order finite-element
methods offers a possibility to account for the large numeri-
cal models while maintaining moderate simulation times as
well as high accuracy. Using this approach, the magnetic
properties of the SIS100 magnets designated to operate
within the Facility of Antiproton and Ion Research (FAIR)
at the GSI Helmholtzzentrum für Schwerionenforschung
GmbH in Darmstadt, are calculated. Results for eddy-
current losses under time-varying operating conditions are
reported.

INTRODUCTION

For the operation of the heavy-ion synchrotron SIS100
as a part of the FAIR project at GSI, the magnetic flux den-
sity in the aperture of the dipole magnets is required to be
ramped at rates as high as 4 T/s in order to keep up with
the acceleration of the particles. As a consequence, eddy-
current effects arising at the end regions of the dipole mag-
nets with respect to the beam orbit, become an important
issue in the magnet design and optimization process.

Despite the laminated structure of the iron yoke, eddy
currents and, in turn, resistive losses appear in the con-
ductive iron sheets. In the actual design, not only the su-
perconductive current coils are operated at the appropriate
temperature of 4.5 K, but also the the ferromagnetic yoke
and the mechanical support. As a consequence, the eddy-
current losses induced by fast ramping appear in the cold
mass of the system. These losses increase the load of the
cryogenic system and therefore the power consumption of
the facility significantly. Hence, one of the design goals is
to reduce the Joule losses inside the magnet to an accept-
able level. Several design optimizations aimed at this issue
have already been proposed, e.g. in [1], [2], whereas the
Nuclotron magnet [3], [4] served as a starting point for the

∗Work supported by GSI Helmholtzzentrum für Schwerionenfor-
schung GmbH, Darmstadt under contract F&E, DA-WEI1

§ koch@temf.tu-darmstadt.de
‡ thomas.weiland@temf.tu-darmstadt.de
¶Herbert.DeGersem@kuleuven-kortrijk.be

Figure 1: Full-length prototype dipole magnet for the
SIS100 including cooling tubes and mechanical assembly
(photograph: J. Guse, GSI (www.gsi.de)).

design. These optimizations are based on experiments as
well as numerical simulations in 2D and 3D.

While the original Nuclotron magnet is 1.4 m long [4],
the length of the current prototype of the SIS100 dipole
shown in Fig. 1 is increased to 2.8 m [5]. Therefore, the
number of dipole magnets required to cover the circumfer-
ence of the synchotron is, in turn, lowered by a factor close
to two when compared to a virtual installation of the short
magnet. As the major fraction of the eddy currents arises at
the end regions of the iron yoke, the resulting overall losses
are reduced accordingly. The increased length, however,
provides additional challenges regarding numerical simu-
lations when using volume-based discretization methods
such as the finite element (FE) method. It leads to larger
numerical models which in turn require a longer simula-
tion time and more computational resources. One way to
deal with the large numerical models is the use of paral-
lelization techniques. Simulations related to the full length
prototype shown in Fig. 1 are carried out using the finite
element method in combination with higher-order shape
functions. The eddy-current losses in the different parts
of the yoke assembly are calculated.

NUMERICAL MODELING

Transient Magnetoquasistatic Formulation

Even though the desired ramping of the aperture field is
fast when considering the amount of energy dissipated in
the electrically conductive iron yoke, the time variation of
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the resulting fields still justifies the application of the mag-
netoquasistatic approximation the Maxwell equations. Dif-
ferent formulations based on potentials or field quantities
can be derived as reviewed, e.g., in [6], [7]. Among these,
the formulation in terms of the magnetic vector potential
�A is well suited for the problem under consideration. It is
introduced in order to represent the magnetic flux density
�B according to

�B = ∇× �A . (1)

This leads to the second order partial differential equation

∇×
(
ν∇× �A

)
+ σ

∂

∂t
�A = �Js , (2)

where ν = 1/μ denotes the reluctivity, μ the permeability,
σ the electric conductivity and �Js the source current den-
sity. Note that �A is interpreted as the modified magnetic
vector potential and therefore features an implicit gauge in
the conductive regions [8]. The quanties of interest within
this application, the electric field strength �E and the mag-
netic flux density �B, are conveniently obtained from the
solution for �A along with its temporal derivative by

�E = −∂ �A

∂t
(3)

and Eq. 1. In contrast to the very similar formulation in
terms of the �E itself, the source current density �Js in Eq. 2
is not required to be differentiated in time. This is es-
pecially important as non-smooth excitation functions are
provided for this type of magnet simulations.

Spatial Discretization

In order to solve the formulation in Eq. 2 numerically,
tetrahedral meshing is applied. The computational domain
is limited to the dipole magnet and the considered parts
of the mechanical assembly. At a sufficient distance to the
structure, closed boundary conditions are applied. By using
vectorial FE shape functions �wj ensuring tangential conti-
nuity of the approximated quantity, the magnetic vector po-
tential is approximated in terms of the local Ritz approach

�A ≈
∑

j

aj �wj . (4)

In case of a lowest order approximation six vectorial shape
functions, each of which associated with one edge of a
tetrahedron, are used to represent the magnetic vector po-
tential �A. This approximation is capable of modeling a lin-
ear variation of the vectorial quantity �A itself as well as a
constant flux density �B resulting from the application of
the curl operator according to Eq. 1 consistently. The sub-
sequent higher order set of shape functions, being quadrat-
ically exact in �A and linearly exact in the curl of �A features
20 shape functions per element and, in turn, the same num-
ber of degrees of freedom aj in Eq. 4. Choosing the same
set of shape functions as test functions �wi as part of the

standard Galerkin procedure turns Eq. 2 into the weak for-
mulation. Discretization of the latter by means of the shape
functions �wj results in the semi-discrete representation of
Eq. 2:

Kνa + Dσ
d
dt

a = js . (5)

In this differential-algebraic equation, Kν denotes the stiff-
ness matrix, Dσ the damping matrix, a collects the degrees
of freedom aj for the magnetic vector potential and the ele-
ments of js describe the excitation current density weighted
by the test functions �wi. The entries of the matrices and
vectors mentioned are given by

(Kν)i,j =
∫

Ω

(∇× �wj) · ν · (∇× �wi) dV , (6)

(Dσ)i,j =
∫

Ω

�wj · σ · �widV , (7)

(js)i =
∫

Ω

�Js · �widV , (8)

where Ω denotes the computational domain and the char-
acteristic material coefficients ν and σ are assumed to be
tensor-valued.

Temporal Discretization and Linearization

The differential-algebraic representation of the magne-
toquasistatic formulation in terms of the magnetic vector
potential in Eq. 5 is discretized in time using the implicit
Euler scheme. For constant time steps Δt indexed by n,
with tn = t0 + nΔt, the algebraic nonlinear system of
equations reads

Kνa(n+1) +
1

Δt
Dσa(n+1) =

1
Δt

Dσa(n) + j(n+1)
s︸ ︷︷ ︸

f (n+1)

, (9)

whereas a(n+1) = a(tn+1), a(n) = a(tn) and j(n+1)
s =

js(tn+1). The fix-point formulation of Eq. 9 is given by
F(a(n+1)) = 0 with

F(a(n+1)) = Kνa(n+1) +
1

Δt
Dσa(n+1) − f (n+1) . (10)

It is nonlinear with respect to the entries of Kν due to fer-
romagnetic saturation. In order to advance from the time
instance tn to tn+1 the nonlinear system needs to be solved.
Based on Eq. 10 linearization is carried out by means of a
Newton-Krylov method. The search direction d(n+1,k+1)

within each nonlinear step k is found by solving the system

J(n+1,k)
F d(n+1,k+1) = −F(a(n)) (11)

with the Jacobian JF of F using a Krylov-subspace itera-
tion. Here, the Jacobian is given in matrix form by

J(n+1,k)
F = K(n+1,k)

νd
+

1
Δt

Dσ (12)
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Figure 2: (a) Simplified model of the SIS100 magnet yoke
and the coil; (b) Strongly enlarged view of the laminated
structure of the yoke based on iron plates and insulation
sheets (relation of thickness is not to scale).

while the entries of the matrix Kνd follow from replacing
ν in Eq. 6 by the differential reluctivity tensor νd, as de-
scribed, e.g., in [9]. As a consequence, the sparsity pattern
of the Jacobian JF is identical to the one of a standard sys-
tem matrix in linear magnetoquasistatic modeling. From
the search direction the new nonlinear iterate a(n+1,k+1) is
obtained by

a(n+1,k+1) = a(n+1,k) + αd(n+1,k+1) (13)

with the relaxation factor α = 1 corresponding to full New-
ton step. A solution candidate a(n+1,k+1) for a(n+1) is ac-
cepted, if the criterion

rnlin =

∥∥F(a(n+1,k+1))
∥∥

2∥∥f (n+1)
∥∥

2

< εnlin (14)

in terms of the relative nonlinear residual rnlin is met for a
prescribed tolerance εnlin. Within each nonlinear step k+1
the system in Eq. 11 is solved using Krylov-subspace itera-
tions. These iterations are terminated once the appropriate
residual tolerance εk+1 for the current nonlinear step k + 1
is reached. Using an adjustable stopping criterion εk+1 as
described in [10] can significantly reduce the total num-
ber of Krylov iterations per time step. An implementation
according to [11] based on the NOX package of the TRILI-
NOS framework [12] is used for the numerical simulations
reported in this paper.

Homogenization of the Laminated Yoke Material

A schematic view of the SIS100 dipole reduced to
the ferromagnetic yoke and the current coil is shown in
Fig. 2(a). Due to the high ramp rate required for the appli-
cation in the synchrotron, the yoke is built from laminated
steel plates as indicated in Fig. 2(b). It is, however, cum-
bersome if not impossible to resolve the very thin insulation
layers between adjacent iron sheet within a 3D numerical
simulation. Therefore, the packing factor γp, commonly
employed to classify laminated steels, is used to construct
a homogeneous, anisotropic material to be considered in
the simulation. For a straight yoke the co-ordinates can be

aligned with the main axes of the anisotropy. As a conse-
quence, diagonal tensors

ν = diag (νxx, νyy, νzz) ; σ = diag (σxx, σyy, σzz) (15)

for the reluctivity ν and the conductivity σ are sufficient to
model the homogenized yoke material as described in [13].

While in general (case A) all entries of the reluctivity
tensor in Eq. 15 are dependent on the value of the magnetic
flux density as well as on the packing factor γp, a simpli-
fication can be introduced at moderate saturation levels up
to 1.6 T [14]. Namely, the reluctivity νzz is observed to be
constant with respect to the saturation level and it is only
related to the packing factor by νzz = ν0(1−γp). This type
of modeling the anisotropic yoke material is referred to as
case B in the following. Details and a comparison of both
material models with respect to the eddy-current losses in
the yoke can be found in [13].

BENCHMARK MODEL

The results reported in the following sections are ob-
tained by using an in-house simulation tool based on the
FEMSTER library [15] for the FE layer and the TRILINOS
framework [12] for the linear algebra infrastructure as well
as parallelized matrix and vector classes in terms of MPI
[16]. Pre- and postprocessing as well as automatic mesh
generation is carried out in CST STUDIO SUITETM [17].

Simulation Setup

In order to validate the simulation tool in terms of a com-
parison of the results for the eddy-current losses to the ones
obtained by other codes, a simplified benchmark model of
the SIS100 dipole was defined [14], [18]. The according
geometry is shown in Fig. 2(a). Further parameters for the
magnetoquasistatic simulations of the simplified model can
be summarized as follows:

• Length of the iron yoke �z = 1200 mm;
• Outer dimensions of the rectangular cross-section of

the yoke: 276 mm × 186 mm;
• Aperture size 146 mm × 56.4 mm;
• Conductivity tensor of the laminated steel: σxx =

σyy = 3.2 · 106 S/m, σzz = 0;
• Maximum excitation current: Imax = 48 kA;
• Coil excitation: triangular cycle 0 . . . 48 kA. . . 0 of

1 s duration (∂B/∂t = 4 T/s);
• Homogeneous, anisotropic, nonlinear yoke material

for different values of the packing factor γp (case A,
case B);

• Constant time step Δt = 0.01 s.

Convergence of the Eddy-Current Losses

On the basis of the discretized model several simulations
are carried out. In a first set, the eddy-current losses are
calculated for different values of the packing factor γp in
the range of 0.93 to 0.98. The losses are evaluated in each
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Figure 3: (a) Time dependence of the volume-integrated eddy-current losses in the magnet yoke in a triangular excitation
cycle for different values of the packing factor γp. (b) Convergence of the loss energy integrated over the length of the
excitation cycle for different levels of discretization: For lowest order shape functions (p = 1) and for shape functions
allowing for a linear variation (p = 2) of the curl of the primary unknown. (c) Convergence of the relative discretization
error of the power losses with respect to a reference solution obtained using 106 degrees of freedom (dofs) in combination
with linear shape functions (p = 2).

time step and integrated spatially over the entire yoke vol-
ume. Fig. 3(a) shows the results on the time-axis. While
the curves agree at the beginning of the cycle, the losses
increase differently due to beginning ferromagnetic satu-
ration starting approximately at t = 0.2 s. For higher
packing factors the resulting eddy-current losses become
larger. However, a high value is required in order to avoid
adversely affecting the magnetic length of the dipole.

A second set of simulations addresses the discretization
error of the numerical simulation which is quantified in
terms of the loss energy over one excitation cycle, here.
In order to compare the results to the ones reported in
[18], the simplified homogenization strategy (case B) is im-
plemented in the simulation tool. Using automatic mesh
generation, several discrete representations of the magnet
model are created. These are equipped with either lowest
(p = 1) or second order (p = 2) FE shape functions. For
each selected combination of a FE mesh and one of the
sets of shape functions, a transient nonlinear simulation is
carried out. The results of the integrated, time-averaged
losses are shown in Fig. 3(b) with respect to the according
number of degrees of freedom (dofs). Very large numeri-
cal models are required in order to obtain reliable results
from the simulation, in particular for the case of lowest
order shape functions. This becomes even more evident
when determining the relative error which is illustrated in
Fig. 3(c). Here, a simulation involving approximately 106

dofs based on second order FE shape functions provides the
reference solution for the eddy-current losses. The higher
approximation order of the linear shape functions leads to
an improved convergence in terms of the discretization er-
ror. As a consequence, a fixed accuracy can be achieved us-
ing fewer degrees of freedom when compared to the curve
related to the lowest order shape functions. Furthermore,
the high accuracy required for the application can only be

reached using the higher order shape functions as, e.g., a
discretization involving ten million lowest order degrees
of freedom only achieves an accuracy of around 1%. The
slope of the curves agrees with the theoretically expected
values for the respective order of approximation.

Comparison to Different Simulation Code

Using the simplified homogenization model (case B) for
the laminated iron yoke, the results for the eddy-current
losses can directly be compared to results from the liter-
ature. The first two results columns of Table 1 show the

Table 1: Time-integrated eddy-current losses for different
values of the packing factor γp using a nonlinear (case A)
as well as a constant reluctivity (case B) in z-direction.

packing case A case B
factor γp Fig. 3(a) Fig. 3(b) cf. [14], [18]

0.93 7.68 J 8.77 J 8.66 J
0.96 9.86 J 11.58 J 11.30 J
0.98 12.51 J 15.05 J 13.90 J

time-integrated losses in the magnet yoke for the two dif-
ferent material models obtained by using the in-house sim-
ulation tool. For comparison, the third column contains the
values reported in [14], [18]. The difference in the results
for the two material models increases for higher packing
factors and reaches up to 20% for γp = 0.98. However,
when comparing the last two columns of Table 1 for case B,
a good agreement within 2.5% is observed for lower pack-
ing factors. The remaining differences can be assigned to
the boundary conditions, which were not exactly specified
in advance. Further contributions might be found in the
temporal discretization as well as in the coil modeling.
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Figure 4: (a) CAD model of the full-length SIS100 dipole (�z = 2.8 m) containing yoke, end plates and brackets ensuring
mechanical stability. The new model uses a modified, lower coil design in order to reduce the eddy-current losses in the
end regions. (b) Realistic excitation cycle resulting in a maximum aperture field of 2.1 T. (c) Eddy-current losses with
respect to time for the separate parts of the yoke assembly.

SIMULATION RESULTS FOR THE
FULL-LENGTH DIPOLE MAGNET

Using the in-house simulation software described above,
a new set of simulations is carried out on the basis of more
realistic parameters for the yoke geometry and for the exci-
tation signal. A design featuring a long yoke offers advan-
tages regarding the magnitude of the eddy-current losses
as well as the homogeneity of the magnetic flux density
in the aperture region. The geometry used for the simula-
tions reported in the following is outlined in Fig. 4(a). End
plates and brackets made from stainless steel, included for
mechanical stability, are considered in the simulations as
these parts are supposed to contribute to the overall losses
in the magnet. In contrast to prior simulations, a more real-
istic operation cycle, as shown in Fig. 4(b), is considered.
Further parameters, as far as differing from the previous
setup, are as follows:

• Length of the iron yoke �z = 2800 mm;
• Thickness of endplates and brackets; d = 15 mm;
• Isotropic conductivity of stainless steel used for end

plates and brackets: σsteel = 2.0 · 106 S/m;
• Isotropic permeability of stainless steel: μsteel,r =

1.01;
• Coil excitation: as indicated in Fig. 4(b);
• Homogeneous, anisotropic, nonlinear yoke material,

packing factor γp = 0.98 (case A).

Due to the increased length of the magnet yoke, a larger
number of tetrahedra is required for the numerical model
when compared to the benchmark model. The superior
convergence of higher-order shape functions (p = 2) is
exploited in order to achieve the desired accuracy in an
acceptable time. As the parallelization of the simulation
tool is implemented on the basis of MPI, shared-memory as
well as distributed-memory computing environments can
be used. The results for the eddy-current losses shown in
Fig. 4(c) are obtained on a workstation featuring two quad-
core processors. A typical transient nonlinear simulation

of this type takes approximately 36 hours, the major part
of which is spent on the solution of the linear systems of
equations. In Fig. 4(c) the time-characteristic of the eddy-
current losses in the different parts of the yoke assembly are
illustrated. The losses in the ferromagnetic yoke form the
major contribution to the overall losses in this setup. Due to
the high packing factor and the resulting anisotropic prop-
erties, relaxation effects arise and in turn lead to different
magnitudes of the two maxima [19]. Also for the brackets,
relaxation effects typical for the isotropic case equivalent
to a packing factor γp,steel = 1 are observed in terms of
an almost vanishing second maximum in the loss charac-
teristic. As the end plates are thin and feature a smaller
electrical conductivity as the laminated steel, the magni-
tude of the resulting losses is very small when compared
to the remaining contributions. Furthermore, the respective
relaxation time is short with respect to the considered sim-
ulation interval. Therefore, the loss characteristic is similar
to the one expected for an equivalent linear RL-network re-
lated to the respective part of the model. Table 2 shows

Table 2: Eddy-current losses in the separate parts of the
yoke assembly for two different levels of discretization
both using FE shape functions of second order (p = 2).

Discretization 433 246 dofs 791 072 dofs

yoke 12.97 J 12.73 J
end plates 1.19 J 1.18 J
bracket 1.95 J 1.95 J
total 16.11 J 15.85 J

the integrated losses over the excitation cycle depicted in
Fig. 4(b) for two different discretizations. The second col-
umn corresponds to the results of Fig. 4(c). In Fig. 5 the
magnitude of the z-component of the magnetic flux den-
sity, which is responsible for the eddy currents, is shown in
the end-region of the magnet. The sub-figures correspond
to time-instances at the beginning (Fig. 5(a)), in the middle
(Fig. 5(b)) and at the end of the acceleration phase.
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Figure 5: Magnitude of the z-component of the magnetic flux density responsible for the eddy-currents at the end regions
of the yoke assmbly in logarithmic color scale at different time instances: (a) t = 0.42 s, (b) t = 0.68 s, (c) t = 0.82 s.

CONCLUSION

Transient, nonlinear simulations required to predict the
eddy-current losses in the SIS100 dipole are carried out by
means of a 3D finite element simulation tool. The results
are compared to a different, independent simulation code
on the basis of a benchmark model. A good agreement
in terms of the calculated eddy-current losses is observed.
The developed simulation tool is well suited for the sim-
ulation of large and geometrically complicated structures.
Thanks to the parallelized simulation framework, it is fur-
ther scalable to even larger numerical models while main-
taining moderate computational times as well as high accu-
racy by using higher-order finite element shape functions.
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