
ARRAY BASED TRUNCATED POWER SERIES PACKAGE*

Lingyun Yang† , NSLS-II, BNL, Upton, NY 11973, USA

Abstract

Truncated Power Series Algebra (TPSA) or Differential
Algebra (DA) package has been a fundamental component
for many accelerator physics simulation code, including
FPP/PTC, MAD-X, BMAD and Tracy. We have developed
a new algorithm to extend the ability of TPAS to handle
problems with both large number of variables and high or-
der. This package is implemented in C++ language with
operator overloading, and has been integrated into PTC and
MAD-X.

INTRODUCTION

Truncated Power Series Algebra (TPSA) or Differential
Algebra (DA) package is a tool for Taylor series manipula-
tion [1, 2]. It follows certain mathematical rules to do arith-
matics among the Taylor series and can be used for map
generating, sensitivity study, automatic differentiation and
many other applications. Since it was implemented by Dr.
Berz, it has been a fundamental component for many ac-
celerator physics simulation codes, including FPP/PTC [4],
MAD-X [3], BMAD and Tracy.
The package in Ref. [1] has two limitations:

• Limited index space at hign v, e.g. 39 variables can
only handle up to first order1.

• Without operator overloading, Applying DA to an ex-
isting code will need many careful translation, and
introduce temporary variable. (think about translate
x = (a + b) ∗ c/d).

We have developed a new TPSA package in C++ re-
cently, with a new algorithm which can expand the ability
to both high number of variables and high orders. It is also
more user friendly and the speed are better than the FOR-
TRAN 77 implementation.

ALGORITHM

The Taylor series of an given function f(x1, · · · , xd) is
given as:

∗Work supported by the Director, Office of Science, U. S. Department
of Energy under Contract No. DE-AC02-05CH11231.

† lyyang@bnl.gov
1We can use more index function again, 3 instead of 2, to relax the

limit from (n + 1)v/2 to (n + 1)v/3 , but the performance will be lower.

f(x1, · · · , xd) =
∞∑

n1=0

· · ·
∞∑

nd=0

(x1 − a1)n1 · · · (xd − ad)nd

n1! · · ·nd!(
∂n1+···+ndf

∂xn1
1 · · · ∂xnd

d

)

(1)

Given the analytic form of f(x1, · · · , xd), we can cal-
culate the coefficient of Taylor series expansion, fx1 , fx2 ,
fx1x2 , up to any order precisely. This can be done with fi-
nite difference method, but when going to high order, the
truncation error and linear approximation may be a main
obstacle. TPSA package uses a set of rule, which is com-
plete for a field of real number and basic arithmetics. The
rules can be found in Ref. [2], and we summerize here:

• Addition/Substraction. It is done between only corre-
sponding terms (coefficients with same order or pat-
tern of differentiation).

• Multiplication with constant. It scales all the coeffi-
cients.

• Multiplication with another series. The order of dif-
ferentiation are added up for each variable. The new
coefficient are added up to the new location with new
pattern of order.

• Reciprocal. The coefficient is gained from the pattern
of Taylor expansion of 1/x.

• Basic functions. Such as sin(x),cos(x),
√

x are just
deduced from their coefficients of Taylor series expan-
sion together with the multiplication of two series.

As we can see that +/- are trivial, and every other calcu-
lation is depending on multiplication of two TPAS series.
While for multiplication the key part is how to arrange the
storage of each coefficients and locate them quickly.

IMPLEMENTATION

A TPSA vector with v independent variables, each up to
d degrees, will have C(v + d, d) or C(v + d, v) elements,
where C(n + v, v) are binomial coefficients defined as

C(v + d, v) ≡
(

v + d

v

)
=

(
v + d

d

)
=

(v + d)!
v!d!

From this we can see that, for the length of a TPSA vector,
the order and number of variables are symmetric. A code
can do high order with low number of variables should be

Proceedings of ICAP09, San Francisco, CA THPSC059

Computer Codes (Design, Simulation, Field Calculation)

371

Table 1: (v, d) Limited by Certain Number of Monomials
N , e.g. 1k, 1M , 1G, 1T .

d

v < 210 < 220 < 230 < 240 < 250

(k) (M) (G) (T) (P)

4 10 68 398 ≈ 240/4 ∗ 4! ≈ 250/4 ∗ 4!
6 6 26 92 300 962
8 4 16 46 115 282
10 4 12 30 67 139
12 3 10 23 46 88
14 3 9 19 36 64
16 3 8 16 30 51
18 2 7 15 26 42
20 2 7 13 23 36
30 2 5 10 16 23
40 2 4 8 13 18
50 1 4 7 11 16
60 1 4 7 10 14
70 1 3 6 9 13
80 1 3 6 9 12
90 1 3 6 8 11
100 1 3 5 8 11

able to do low order with high number of variables. Some
examples are shown in Table 1. Where given the maximal
number of terms in Taylor series, the table tells how many
variables and upto which order the code can store.
The Taylor series expansion of a multi-variable function

up to certain order has a polynomial structure, we write as
(v, d), where v is the number of variables, and d is the high-
est order considered. It is stored as a vector, where each
element represents one term in Taylor Series Expansion.
In order to speed up the multiplication, we build up a

look up table P . The element P [i, j] is the location to save
v[i] × v[j]. A look up table for the above multiplication, 2
variables, order up to 3rd order looks like Table. 2

Table 2: Hash table for TPSA multiplication (2, 3)

0 1 2 3 4 5 6 7 8 9

1 0 0 1 2 3 4 5 6 7 8 9

∂
∂x 1 1 3 4 6 7 8

∂
∂y 2 2 4 5 7 8 9

∂2

∂x∂x 3 3 6 7

∂2

∂x∂y 4 4 7 8

∂2

∂y∂y 5 5 8 9

∂3

∂x∂x∂x 6 6

∂3

∂x∂x∂y 7 7

∂3

∂x∂y∂y 8 8

∂3

∂y∂y∂y 9 9

We should first notice that Table. 2 is symmetric, i.e.
P [i, j] = P [j, i], therefore only half of the storage is
needed. Secondly, since we are truncating at certain or-
der, the table is not squared but a step-like. The real size of

this matrix T (v, d) is

T (v, d) =
d∑

k=0

(
v + k − 1

k

)
N(v, d − k)

≡
d∑

k=0

(
v + k − 1

k

)(
v + d − k

d − k

)

=
d∑

k=0

(
v − 1 + k

v − 1

)(
v + d − k

v

)

=
(

2v + d

d

)

(2)

where N(v, d) is the length of TPSA vector (v, d). From
Table. 1 we can easily find the limit on (v, d) when using
this hash table.
The above hash table can solve problems both low order

but high number of variables and high order but small num-
ber of variables, but for both high order and large number
of variables, the hash table becomes too large to store.
We can arrange the Taylor series in a way such that, the

new location of multiplication of two TPSA coefficients
can be identified recursively. The number of recursion is
only linear with number of variables in this TPSA. There-
fore we used a small hash table H which has a size of v×v.
This is not a constraint at all when comparing with the size
of TPSA vectors. The location of derivative pattern bk is

C(bk) =
v∑

i=1

H(i,
i∑

j=v

bk,j)

whereH(v, d) is the hash function. One example is shown
in Table 3. The derivative pattern bk is a vector represents
the order of derivative to each variable. For example, the
index of (1 2 1 0) is 46 from Table 3:

C[(0 0 1 0) ∗ (1 2 0 0)] = C(1 2 1 0)
=H(1, 0) + H(2, (0 + 1))+

H(3, (0 + 1 + 2)) + H(4, (0 + 1 + 2 + 1))
=H(1, 0) + H(2, 1) + H(3, 3) + H(4, 4)
=0 + 1 + 10 + 35
=46

(3)

The overall complexity is O(v) when v ≈ d and
(

d
v+d

)
is too large to fit in memory.
Once the multiplication is well implemented, the rest is

just a trivial application of it to Taylor series expansion.
More detailed formula can be found in Ref. [2, 1].

BENCHMARK

This new package is compared with F77 implementation
of TPSA (DA), and shown in Fig. 1. This speed test is
very coarse, and only used system tools of Linux platform.
Our conclusion here is that the new TPSA in C++ is faster
than the F77 implementation, and with more features and
abilities.

THPSC059 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

372

Table 3: Hash Table H(i, j)

j
i 0 1 2 3 4 5

1 0 1 2 3 4 5
2 0 1 3 6 10 15
3 0 1 4 10 20 35
4 0 1 5 15 35 70

1 2 3 4 5 6 7 8 9 10
(v,d)

10-3

10-2

10-1

100

101

102

T
im

e
 [

se
c]

F77(4,d)
F77(v,3)
C++(4,d)
C++(v,3)
C++(4,d)*15
C++(v,3)*15

Figure 1: Performance comparison of F77 and C++ ver-
sion.

CODE EXAMPLE

The following code shows a simple example calculating
Taylor series of f(x1, x2) = 1/(x1 + x2). With operator
overloading the code is very straight forward. The package
introduces a new type called TPSA, and trys to mimic the
native C++ types, such as double, string. I am trying to
make it transparent to users.

inc lude <i o s t r e am>
2 # inc lude <ct ime>
inc lude ” t p s a . hh ”

4

us ing namespace s t d ;
6

i n t main ()
8 {

/ / number o f v a r i a b l e , degree
10 cons t uns igned char cnv = 3 , cnd = 10 ;

12 / / f i r s t i n d ependen t v a r i a b l e , w i t h i nd e x 0
/ / i n i t i a l i z e d as 1 . 0

14 TPSA<double , cnv , cnd> a (1 . 0 L , 0) ;
/ / 2nd , as 2 . 0

16 TPSA<double , cnv , cnd> b (2 . 0 L , 1) ;
/ / 3 rd , as 3 . 0 , no t used

18 / / TPSA<double , cnv , cnd> c (3 . 0 L , 2) ;

20 TPSA<double , cnv , cnd> aa ; / / normal v a r i a b l e

22 aa = 1 . 0 / (a+b) ;

24 c ou t << aa << end l ; / / p r i n t ou t t h e r e s u l t .

26 / / more example :
/ / s i n (aa) , cos (aa) , s q r t (aa) , t a n (aa) .

28

re turn 0 ;
30 }

The output of FORTRAN version TPSALib.f and C++
version is in Table. 4.

Table 4: Output of FORTRAN and C++ version

FORTRAN C++
I COEFFICIENT ORDER EXPONENTS

1 0.33333333333333E+00 0 0 0 0
2 -0.11111111111111E+00 1 1 0 0
3 -0.11111111111111E+00 1 0 1 0
4 0.37037037037037E-01 2 2 0 0
5 0.74074074074074E-01 2 1 1 0
6 0.37037037037037E-01 2 0 2 0
7 -0.12345679012346E-01 3 3 0 0
8 -0.37037037037037E-01 3 2 1 0
9 -0.37037037037037E-01 3 1 2 0
10 -0.12345679012346E-01 3 0 3 0
11 0.41152263374486E-02 4 4 0 0
12 0.16460905349794E-01 4 3 1 0
13 0.24691358024691E-01 4 2 2 0
14 0.16460905349794E-01 4 1 3 0
15 0.41152263374486E-02 4 0 4 0

V Base

3.3333333333e-01 0 0 0

-1.1111111111e-01 1 0 0
-1.1111111111e-01 0 1 0
3.7037037037e-02 2 0 0
7.4074074074e-02 1 1 0
3.7037037037e-02 0 2 0

-1.2345679012e-02 3 0 0
-3.7037037037e-02 2 1 0
-3.7037037037e-02 1 2 0
-1.2345679012e-02 0 3 0
4.1152263374e-03 4 0 0
1.6460905350e-02 3 1 0
2.4691358025e-02 2 2 0
1.6460905350e-02 1 3 0
4.1152263374e-03 0 4 0

...
...

56 0.56450292694768E-05 10 10 0 0
57 0.56450292694768E-04 10 9 1 0
58 0.25402631712645E-03 10 8 2 0
59 0.67740351233721E-03 10 7 3 0
60 0.11854561465901E-02 10 6 4 0
61 0.14225473759081E-02 10 5 5 0
62 0.11854561465901E-02 10 4 6 0
63 0.67740351233721E-03 10 3 7 0
64 0.25402631712645E-03 10 2 8 0
65 0.56450292694768E-04 10 1 9 0
66 0.56450292694768E-05 10 010 0

5.6450292695e-06 10 0 0
5.6450292695e-05 9 1 0
2.5402631713e-04 8 2 0
6.7740351234e-04 7 3 0
1.1854561466e-03 6 4 0
1.4225473759e-03 5 5 0
1.1854561466e-03 4 6 0
6.7740351234e-04 3 7 0
2.5402631713e-04 2 8 0
5.6450292695e-05 1 9 0
5.6450292695e-06 010 0

ACKNOWLEDGEMENT

The author would like to thank ALS accelerator physics
group at LBNL for their support, Etienne Forest for inte-
gration with FPP/PTC, Frank Schmidt for integration with
MAD-X.

REFERENCES

[1] Martin Berz. Differential algebraic description of beam dy-
namics to very high orders. Particle Accelerators, pages 109–
124, 1989.

[2] Alex Chao. Notes on Topics in Accelerator Physics. 2002.

[3] MAD-X website, http://mad.web.cern.ch/mad/.

[4] E. Forest, Y. Nogiwa, F. schmidt. The FPP and PTC Libraries.

Proceedings of ICAP09, San Francisco, CA THPSC059

Computer Codes (Design, Simulation, Field Calculation)

373

