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Abstract 
Tracy# is a C# class library for single particle beam 

dynamics in full 6-dim canonical phase space. The code is 
based on Goemon that is a C++ version of the Tracy2 
library. This paper describes the new features in Tracy# 
from a software engineering aspect. 

INTRODUCTION 
During the ALS[1] design phase, Tracy[2] was 

developed in Pascal for modeling and tracking studies by 
using embedded Pascal compiler/interpreter to parse the 
user logic. It evolved to a 6-dimensional version called 
Tracy2[3].  Subsequently its accelerator physics library 
was separated from Tracy and ported to C/C++ 
independently at multiple light sources, including SLS[4], 
Diamond[5], Soleil[6] and NSLS-2[7], mostly for model-
based accelerator controls. At the ALS, the library was re-
written in C++ as Goemon[8], which has now been re-
written in C# [9] and called Tracy#.  

FEATURES 

 Library Layers 
Tracy# is a library that implements single particle beam 

dynamics for modeling, simulation and analysis studies. 
An application built with Tracy# has 3 layers:  
 
 Physics layer, which is Tracy# itself. 
 Accelerator layer to model particular accelerators. 
 Application layer. 

 
The Physics layer is for beam dynamics and uses the 

following integrators: 
 
 The 4x5 linear matrix formalism. 
 The 2nd and the 4th-order symplectic integrators[10] 

in 6-dim. 
 K-pot Hamiltonian[11] that models small rings 

properly. 
 

In Tracy# these integrators were implemented in C# 
taking advantage of some of the important language 
features. For example, operator overloading is used for: 
 
 Vector and matrix calculations. 
 Differential algebra (DA) [12]. 
 Lattice definitions. 
 
The second layer is to model particular accelerator 

structures. This is the place where virtual accelerators are 

built in forms of C# classes. Starting with an ideal lattice, 
a virtual machine is enhanced to be a practical one that 
provides realistic error emulations, various control knobs, 
and customized physics routines to calculate a range of 
quantities including dynamic apertures.  

The application layer is for client application programs 
that access the virtual accelerators. These programs can 
use any features of the .NET libraries that cover database 
access, XML, networks and graphics. Tracy# is designed 
to be compatible with these standard .NET libraries. 
Actually, Tracy# needs only one external routine that is 
for the singular value decomposition to invert the large 
sensitivity matrices. We chose an open–source math 
library in C#[13].  

Environment 
Tracy# is built on the .NET Framework 3.5, and works 

on Windows XP SP2 as well as Vista. The development 
environment is Visual Studio 2008. The programming 
language for the physics layer is C# 3.0. The client 
programs are also developed in the same development 
environment and usually in C# 3.0. However, they can be 
in other .NET languages, such as Visual Basic.NET or 
IronPython[14] that we mention later. 

Tracy# can also work non-Windows platform by using 
MONO[15] that is an independent, open-source 
implementation of the .NET Framework that covers 
various platforms, including Linux, Solaris and 
Macintosh. As Tracy# itself is a plain C# code, it is 
compatible with MONO. It is also possible to make its 
application program portable by carefully choosing the 
graphics components for GUI programming. 

Implementation 
As mentioned, Tracy# uses advanced features of the 

.NET Framework. In particular, .NET generics proved 
invaluable especially List< >. In case of Goemon in C++, 
we did not use C++ generics called template to keep the 
compile-and-link time reasonably short. 

Porting the routines for vector/matrix and DA was not 
trivial. Goemon used local variables allocated on the 
memory stack to carry out calculations rapidly. This trick 
in C/C++ does not work with C#. Therefore the C# 
routines needed fine tuning to restore execution speed[9]. 
Currently, we are rewriting routines further to enable 
parallel computing as mentioned later. 

Graphics is not a core part of Tracy#. Instead, the 
accelerator layer uses it extensively. The graphics 
programming was in WinForm of .NET 2.0, and is 
migrating to Windows Presentation Foundation (WPF) of 
.NET 3.0.  

Tracy# also uses relational databases and XML as 
described in the following sections. 
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DATABASE 
There has been an increasing need for data 

management to track lattice configurations, simulation 
conditions, and the results of calculations with proper 
context. Tracy# makes use of standard SQL and XML for 
these management tasks. Both technologies are well 
supported on .NET.  

Currently, Tracy# uses ADO.NET 2.0 for database 
access. Its DataSet component is a kind of on-memory 
database embedded in a client program.  Its external data 
source can be almost any major SQL database including 
MySQL.  

At the ALS MySQL is the most common database 
system. It is used by controls applications including 
various Matlab programs dealing with automated machine 
control[16]. Tracy# reads tables produced by these 
programs to retrieve the current operational reference 
values. For example, there is a table for the measured 
sensitivity matrix produced by a Matlab program. This is 
the table most referred by Tracy#.  

Tracy# usually restores the data of a database table to 
an ADO.NET DataTable object in memory, and then they 
can be stored in other database, or to XML. This part is 
not limited to any particular database system. 

XML 
Tracy# uses XML extensively to manage its own data 

through a new API called LINQ to XML[17]. The merit 
of using XML rather than SQL is the flexibility to support 
complex data structures. One XML file can replace 
multiple SQL data tables and relations among them. 
Although XML may look complicated, it simplifies the 
data management significantly.  This is especially true 
with LINQ to XML as it provides an API that is much 
simpler than other XML APIs like DOM or SAX. For 
example, an XML node can be created independently 
from the XML document, and later it can be inserted to 
another XML node that may already be in the XML 
document. Therefore, we can even use an XElement 
object like an ordinary variable. Here XElement is a new 
class of LINQ to XML that supports XML nodes.  

Currently, Tracy# uses XML for the following 
functions: 

 
 Lattice description 
 Algorithm description 
 Data storage 

 

Lattice Definition in XML 
In constructing a virtual accelerator using Tracy#, a 

lattice structure is typically defined in the creator of its 
custom ring class by using operator overloading like: 
SEC=SYM+L1+QF+L2+BL2 where SEC is a new beam 
line object and the right-hand side is a series of either 
single elements, such as magnets, or lines of them. So the 
lattice is defined in C# which allows the lattice to be 
defined in a very detailed fashion.  

There is also a complementary way of defining a 
simple lattice in a descriptive manner. For example: 

 
 <Lattice Name="BR0"> 
    <Element Class="Quad" Name="QF" L="0.15" 
   K="2.62488449385119" /> 
    <Element Class="Quad" Name="QD" L="0.1"  
                        K="-2.44458454557616" /> 
    <Element Class="Bend" Name="B" L="1.05"  
                        K="0" T="15" T1="7.5" T2="7.5" /> 
    <Element Class="Drift" Name="L1" L="0.5469" /> 
    <Element Class="Drift" Name="L2" L="0.4969" /> 
    <Element Class="Drift" Name="L3" L="2.0938" /> 
    <Eline Name="S1" Line="QD, L1,B,L2,QF"/> 
    <Eline Name="S2" Line="QF,L3, QD"/> 
    <Eline Name="S3" Line="QD,L1,B,L2,QF "/> 
    <Eline Name="SGA"  Line="S1,S2,S3,-S1"/> 
    <Element Class="Marker" Name="SYM"/> 
    <Eline Name="SEC" Line="SYM,SGA,-SGA" /> 
  </Lattice> 

 
Tracy# accepts such a lattice defined in XML that follows 
the same convention of defining a lattice in Tracy2 and 
Goemon. Without writing a complex lattice parser, or 
defining a special grammer, we can use XML to define a 
lattice as a data input to Tracy# at runtime. 

XML can also be used to define a very complex lattice. 
We had such scenario with the radiation safety studies for 
top-off injection at the ALS[18]. This was a tracking 
study far off the reference orbit. The horizontal offset can 
be over 50 cm which is enough to bypass the bending 
magnet (the vacuum chamber has an ante-chamber that 
allows this path). Therefore magnetic field profiles and 
the chamber apertures must be included in the lattice. We 
created a special version of Tracy# for this study. 
Transferring the lattice in XML, extra nodes were added 
to assign the magnet field profiles and chamber 
geometries.  XML was flexible enough to accommodate 
complexities of the lattice definitions. 

Simulation Logic in XML 
Similar to the case of a simple lattice definition in 

XML, simple simulation logic can be described in XML. 
Here is an example of initializing the ideal lattice of the 
ALS Booster Ring that uses the lattice just defined above.  

 
  <Ring Name="BR0" Lattice="BR0" ELine="SEC"   
                                    Symmetry="4"> 
    <Energy Value="1.9E9" /> 
    <GetTwiss Value="1" /> 
    <SetQforTune QF="QF" QD="QD" /> 
    <FitTune Nux="5.25" Nuy="2.75" /> 
  </Ring> 

 
This example shows that XML can describe simple logic 
in a reasonable manner. 

Note that XML is used for both lattice definitions and 
algorithms, which means that they can be in the same 
XML document. Currently, we have very simple parsers 

Proceedings of ICAP09, San Francisco, CA THPSC035

Computer Codes (Design, Simulation, Field Calculation)

327



that use LINQ to XML, and add to their functionality  
whenever reuired.  

XML also served an important role for providing very 
complex logic as in the case of the top-off radiation safety 
studies. There was no established methodology from 
other accelerators that could be applied to the ALS. 
Therefore the specification of the safery calculation 
evolved as our understanding of the problem grew. The 
flexibility of XML was crucial to accommodate the 
evolving nature of the simulation. 

XML for Data Storage 
Tracy# uses XML as its primary data format of files. 

The most recent example is for our sextupole upgrade 
project[19] to reduce the storage ring emittance down to 
1/3 of the current value. We are in a process of optimizing 
the lattice with two new families of sextupole magnets. 
There is a need to store various lattice configurations, the 
result of simulations for each one of them, and retrieve 
the stored content. The resulting XML file contains over 1 
million lines. We wrote several client programs of Tracy# 
to read and update the XML file.  

An interesting observation is that there is no real 
distinction between input and output data in the case of 
XML. This is similar to the case of using a relational 
database. A program reads what it needs from the XML 
files, avoiding redundant calculations and keeping the 
previous context, then carries out certain tasks and 
updates XML by changing the attribute values, and also 
adding new nodes. This means that it grows as the 
simulation evolves. If we use a relational database, the 
process of adding nodes corresponds to modifying a table 
design (schema) or creating a new table with new 
relations which will be far more complex than a case of 
XML. 

Potential problems with XML can be its file size and 
processing speed. Fortunately, we have not yet 
experienced any significant limitation. 

The XML effort happened first with the control system 
upgrade in C#[20]. Tracy# is benefitting from our 
previous and continuing work on the control system. 
Routines for database access using ADO.NET, and 
graphics programming in WPF that were first used for the 
machine controls have also been migrated to Tracy#. 
Concerning resource sharing, our C# development is 
catching up with Matlab that has been used for both 
physics[21] and controls[16] at the ALS. 

INTERACTIVE SCIPTING 
Interactive scripting offers a convenient option to the 

traditional software development cycle which includes 
editing, compiling before execution. Our early attempts 
were TracyM and TracyML[22] that have been 
superseded by AT[16] in Matlab. An inconvenience is 
that an interactive programming language isolates itself 
and requires specially compiled modules to access 
external routines that are written in compilers. However, 
on the .NET Framework, it can access the .NET libraries, 

including Tracy#, normally and directly without any extra 
layer. 

IronPython Example 
Below is an example of using Tracy# interactively from 

IronPython[14]. Invoking IronPython, establishing the 
link to the Tracy# library, and importing its name spaces, 
we can use all the routines directly without any special 
layer. This example calculates the emittance of the 
nominal and the new low-emittance lattices of the ALS 
storage ring. ( >>> is a prompt.) 

  
>>> import sys 
>>> sys.path.append('T:/Tracy/IronPython') 
>>> from ipTracy import * 
>>> SR=ALSSRW() 
>>> SR.getTwiss(1) 
True 
>>> SR.fitNuxNuyEta(14.25, 9.20, 0.06) 
True 
>>> SR.getTwiss(1) 
True 
>>> SR.calcIntegral() 
>>> SR.calcEmittance(1.9E9) 
>>> print 'Emittance=', SR.NtlEmittance 
Emittance= 6.8094734722e-009 
>>> SR.fitNuxNuyEta(16.25, 9.20, 0.15) 
True 
>>> SR.getTwiss(1) 
True 
>>> SR.calcIntegral() 
>>> SR.calcEmittance(1.9E9) 
>>> print 'Emittance=', SR.NtlEmittance 
Emittance= 2.16587971373e-009 
>>> 
 

Here T:/Tracy/IronPython is the location of the directory 
of the Tracy# library and the module ipTracy.py contains 
lines to import the several .NET assemblies of Tracy#. 
This kind of capability of interactive scripting is one of 
the major merits of the .NET Framework. 

ONGOING EFFORT 
There are multiple efforts in progress to upgrade 

Tracy# by taking newer functions of the .NET 
Framework. The most important one is the parallelism to 
make use of modern multi-core CPUs. We have just 
added new routines to track particles simultaneously and 
testing it[23]. A parallelized for statement has tripled the 
execution speed in case of tracking for dynamic aperture 
calculations on a PC with a quad-core CPU. 
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