
TRACY#*

H. Nishimura
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U.S.A.

Abstract
Tracy# is a C# class library for single particle beam

dynamics in full 6-dim canonical phase space. The code is
based on Goemon that is a C++ version of the Tracy2
library. This paper describes the new features in Tracy#
from a software engineering aspect.

INTRODUCTION
During the ALS[1] design phase, Tracy[2] was

developed in Pascal for modeling and tracking studies by
using embedded Pascal compiler/interpreter to parse the
user logic. It evolved to a 6-dimensional version called
Tracy2[3]. Subsequently its accelerator physics library
was separated from Tracy and ported to C/C++
independently at multiple light sources, including SLS[4],
Diamond[5], Soleil[6] and NSLS-2[7], mostly for model-
based accelerator controls. At the ALS, the library was re-
written in C++ as Goemon[8], which has now been re-
written in C# [9] and called Tracy#.

FEATURES

 Library Layers
Tracy# is a library that implements single particle beam

dynamics for modeling, simulation and analysis studies.
An application built with Tracy# has 3 layers:

 Physics layer, which is Tracy# itself.
 Accelerator layer to model particular accelerators.
 Application layer.

The Physics layer is for beam dynamics and uses the

following integrators:

 The 4x5 linear matrix formalism.
 The 2nd and the 4th-order symplectic integrators[10]

in 6-dim.
 K-pot Hamiltonian[11] that models small rings

properly.

In Tracy# these integrators were implemented in C#
taking advantage of some of the important language
features. For example, operator overloading is used for:

 Vector and matrix calculations.
 Differential algebra (DA) [12].
 Lattice definitions.

The second layer is to model particular accelerator

structures. This is the place where virtual accelerators are

built in forms of C# classes. Starting with an ideal lattice,
a virtual machine is enhanced to be a practical one that
provides realistic error emulations, various control knobs,
and customized physics routines to calculate a range of
quantities including dynamic apertures.

The application layer is for client application programs
that access the virtual accelerators. These programs can
use any features of the .NET libraries that cover database
access, XML, networks and graphics. Tracy# is designed
to be compatible with these standard .NET libraries.
Actually, Tracy# needs only one external routine that is
for the singular value decomposition to invert the large
sensitivity matrices. We chose an open–source math
library in C#[13].

Environment
Tracy# is built on the .NET Framework 3.5, and works

on Windows XP SP2 as well as Vista. The development
environment is Visual Studio 2008. The programming
language for the physics layer is C# 3.0. The client
programs are also developed in the same development
environment and usually in C# 3.0. However, they can be
in other .NET languages, such as Visual Basic.NET or
IronPython[14] that we mention later.

Tracy# can also work non-Windows platform by using
MONO[15] that is an independent, open-source
implementation of the .NET Framework that covers
various platforms, including Linux, Solaris and
Macintosh. As Tracy# itself is a plain C# code, it is
compatible with MONO. It is also possible to make its
application program portable by carefully choosing the
graphics components for GUI programming.

Implementation
As mentioned, Tracy# uses advanced features of the

.NET Framework. In particular, .NET generics proved
invaluable especially List< >. In case of Goemon in C++,
we did not use C++ generics called template to keep the
compile-and-link time reasonably short.

Porting the routines for vector/matrix and DA was not
trivial. Goemon used local variables allocated on the
memory stack to carry out calculations rapidly. This trick
in C/C++ does not work with C#. Therefore the C#
routines needed fine tuning to restore execution speed[9].
Currently, we are rewriting routines further to enable
parallel computing as mentioned later.

Graphics is not a core part of Tracy#. Instead, the
accelerator layer uses it extensively. The graphics
programming was in WinForm of .NET 2.0, and is
migrating to Windows Presentation Foundation (WPF) of
.NET 3.0.

Tracy# also uses relational databases and XML as
described in the following sections.

*Work supported by the U.S. Department of Energy under Contract
 No. DE-AC02-05CH11231

THPSC035 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

326

DATABASE
There has been an increasing need for data

management to track lattice configurations, simulation
conditions, and the results of calculations with proper
context. Tracy# makes use of standard SQL and XML for
these management tasks. Both technologies are well
supported on .NET.

Currently, Tracy# uses ADO.NET 2.0 for database
access. Its DataSet component is a kind of on-memory
database embedded in a client program. Its external data
source can be almost any major SQL database including
MySQL.

At the ALS MySQL is the most common database
system. It is used by controls applications including
various Matlab programs dealing with automated machine
control[16]. Tracy# reads tables produced by these
programs to retrieve the current operational reference
values. For example, there is a table for the measured
sensitivity matrix produced by a Matlab program. This is
the table most referred by Tracy#.

Tracy# usually restores the data of a database table to
an ADO.NET DataTable object in memory, and then they
can be stored in other database, or to XML. This part is
not limited to any particular database system.

XML
Tracy# uses XML extensively to manage its own data

through a new API called LINQ to XML[17]. The merit
of using XML rather than SQL is the flexibility to support
complex data structures. One XML file can replace
multiple SQL data tables and relations among them.
Although XML may look complicated, it simplifies the
data management significantly. This is especially true
with LINQ to XML as it provides an API that is much
simpler than other XML APIs like DOM or SAX. For
example, an XML node can be created independently
from the XML document, and later it can be inserted to
another XML node that may already be in the XML
document. Therefore, we can even use an XElement
object like an ordinary variable. Here XElement is a new
class of LINQ to XML that supports XML nodes.

Currently, Tracy# uses XML for the following
functions:

 Lattice description
 Algorithm description
 Data storage

Lattice Definition in XML
In constructing a virtual accelerator using Tracy#, a

lattice structure is typically defined in the creator of its
custom ring class by using operator overloading like:
SEC=SYM+L1+QF+L2+BL2 where SEC is a new beam
line object and the right-hand side is a series of either
single elements, such as magnets, or lines of them. So the
lattice is defined in C# which allows the lattice to be
defined in a very detailed fashion.

There is also a complementary way of defining a
simple lattice in a descriptive manner. For example:

 <Lattice Name="BR0">
 <Element Class="Quad" Name="QF" L="0.15"
 K="2.62488449385119" />
 <Element Class="Quad" Name="QD" L="0.1"
 K="-2.44458454557616" />
 <Element Class="Bend" Name="B" L="1.05"
 K="0" T="15" T1="7.5" T2="7.5" />
 <Element Class="Drift" Name="L1" L="0.5469" />
 <Element Class="Drift" Name="L2" L="0.4969" />
 <Element Class="Drift" Name="L3" L="2.0938" />
 <Eline Name="S1" Line="QD, L1,B,L2,QF"/>
 <Eline Name="S2" Line="QF,L3, QD"/>
 <Eline Name="S3" Line="QD,L1,B,L2,QF "/>
 <Eline Name="SGA" Line="S1,S2,S3,-S1"/>
 <Element Class="Marker" Name="SYM"/>
 <Eline Name="SEC" Line="SYM,SGA,-SGA" />
 </Lattice>

Tracy# accepts such a lattice defined in XML that follows
the same convention of defining a lattice in Tracy2 and
Goemon. Without writing a complex lattice parser, or
defining a special grammer, we can use XML to define a
lattice as a data input to Tracy# at runtime.

XML can also be used to define a very complex lattice.
We had such scenario with the radiation safety studies for
top-off injection at the ALS[18]. This was a tracking
study far off the reference orbit. The horizontal offset can
be over 50 cm which is enough to bypass the bending
magnet (the vacuum chamber has an ante-chamber that
allows this path). Therefore magnetic field profiles and
the chamber apertures must be included in the lattice. We
created a special version of Tracy# for this study.
Transferring the lattice in XML, extra nodes were added
to assign the magnet field profiles and chamber
geometries. XML was flexible enough to accommodate
complexities of the lattice definitions.

Simulation Logic in XML
Similar to the case of a simple lattice definition in

XML, simple simulation logic can be described in XML.
Here is an example of initializing the ideal lattice of the
ALS Booster Ring that uses the lattice just defined above.

 <Ring Name="BR0" Lattice="BR0" ELine="SEC"
 Symmetry="4">
 <Energy Value="1.9E9" />
 <GetTwiss Value="1" />
 <SetQforTune QF="QF" QD="QD" />
 <FitTune Nux="5.25" Nuy="2.75" />
 </Ring>

This example shows that XML can describe simple logic
in a reasonable manner.

Note that XML is used for both lattice definitions and
algorithms, which means that they can be in the same
XML document. Currently, we have very simple parsers

Proceedings of ICAP09, San Francisco, CA THPSC035

Computer Codes (Design, Simulation, Field Calculation)

327

that use LINQ to XML, and add to their functionality
whenever reuired.

XML also served an important role for providing very
complex logic as in the case of the top-off radiation safety
studies. There was no established methodology from
other accelerators that could be applied to the ALS.
Therefore the specification of the safery calculation
evolved as our understanding of the problem grew. The
flexibility of XML was crucial to accommodate the
evolving nature of the simulation.

XML for Data Storage
Tracy# uses XML as its primary data format of files.

The most recent example is for our sextupole upgrade
project[19] to reduce the storage ring emittance down to
1/3 of the current value. We are in a process of optimizing
the lattice with two new families of sextupole magnets.
There is a need to store various lattice configurations, the
result of simulations for each one of them, and retrieve
the stored content. The resulting XML file contains over 1
million lines. We wrote several client programs of Tracy#
to read and update the XML file.

An interesting observation is that there is no real
distinction between input and output data in the case of
XML. This is similar to the case of using a relational
database. A program reads what it needs from the XML
files, avoiding redundant calculations and keeping the
previous context, then carries out certain tasks and
updates XML by changing the attribute values, and also
adding new nodes. This means that it grows as the
simulation evolves. If we use a relational database, the
process of adding nodes corresponds to modifying a table
design (schema) or creating a new table with new
relations which will be far more complex than a case of
XML.

Potential problems with XML can be its file size and
processing speed. Fortunately, we have not yet
experienced any significant limitation.

The XML effort happened first with the control system
upgrade in C#[20]. Tracy# is benefitting from our
previous and continuing work on the control system.
Routines for database access using ADO.NET, and
graphics programming in WPF that were first used for the
machine controls have also been migrated to Tracy#.
Concerning resource sharing, our C# development is
catching up with Matlab that has been used for both
physics[21] and controls[16] at the ALS.

INTERACTIVE SCIPTING
Interactive scripting offers a convenient option to the

traditional software development cycle which includes
editing, compiling before execution. Our early attempts
were TracyM and TracyML[22] that have been
superseded by AT[16] in Matlab. An inconvenience is
that an interactive programming language isolates itself
and requires specially compiled modules to access
external routines that are written in compilers. However,
on the .NET Framework, it can access the .NET libraries,

including Tracy#, normally and directly without any extra
layer.

IronPython Example
Below is an example of using Tracy# interactively from

IronPython[14]. Invoking IronPython, establishing the
link to the Tracy# library, and importing its name spaces,
we can use all the routines directly without any special
layer. This example calculates the emittance of the
nominal and the new low-emittance lattices of the ALS
storage ring. (>>> is a prompt.)

>>> import sys
>>> sys.path.append('T:/Tracy/IronPython')
>>> from ipTracy import *
>>> SR=ALSSRW()
>>> SR.getTwiss(1)
True
>>> SR.fitNuxNuyEta(14.25, 9.20, 0.06)
True
>>> SR.getTwiss(1)
True
>>> SR.calcIntegral()
>>> SR.calcEmittance(1.9E9)
>>> print 'Emittance=', SR.NtlEmittance
Emittance= 6.8094734722e-009
>>> SR.fitNuxNuyEta(16.25, 9.20, 0.15)
True
>>> SR.getTwiss(1)
True
>>> SR.calcIntegral()
>>> SR.calcEmittance(1.9E9)
>>> print 'Emittance=', SR.NtlEmittance
Emittance= 2.16587971373e-009
>>>

Here T:/Tracy/IronPython is the location of the directory
of the Tracy# library and the module ipTracy.py contains
lines to import the several .NET assemblies of Tracy#.
This kind of capability of interactive scripting is one of
the major merits of the .NET Framework.

ONGOING EFFORT
There are multiple efforts in progress to upgrade

Tracy# by taking newer functions of the .NET
Framework. The most important one is the parallelism to
make use of modern multi-core CPUs. We have just
added new routines to track particles simultaneously and
testing it[23]. A parallelized for statement has tripled the
execution speed in case of tracking for dynamic aperture
calculations on a PC with a quad-core CPU.

AKNOWLEDGEMENTS
The author thanks C. Steier for his encouragement and

useful advices. He also appreciates C. Timossi for
technical discussions on computational issues and useful
comments.

THPSC035 Proceedings of ICAP09, San Francisco, CA

Computer Codes (Design, Simulation, Field Calculation)

328

REFERENCES
[1] LBL PUB-5172 Rev. LBL, 1986
 A. Jackson, PAC'93, Washington, D.C, USA, p.1432,

(1993)
[2] H. Nishimura, EPAC'88, Rome, Italy, p.803(1989)
[3] J. Bengtsson, E. Forest and H. Nishimura, 'Tracy

User Manual", unpublished, ALS, LBNL
[4] M. Böge, J. Chrin, ICALEPCS'01, San Jose, USA,

p.430 (2001)
[5] M. Heron, et al, EPAC'06, Edinburgh, UK, p.3068

(2006)

[6] P. Brunelle, A. Loulergue, A. Nadji, L.S. Nadolski,
EPAC'04, Lucerne, Switzerland, p.2032 (2004).

[7] L. B. Dalesio, ICALEPCS'07, Knoxville, USA,
p.253(2007)

[8] H. Nishimura, PAC'01, Chicago, USA, p.3006,
(2001)

[9] H. Nishimura and T. Scarvie, EPAC'06, Edinburgh,
UK, p.2263 (2006)

[10] E. Forest and R. Ruth, Physica D, vol. 43(1)
p.105(1990)

[11] E. Forest, “Beam Dynamics, A New Attitude and
Framework”, Chap.12, 1998, Harwood Academic
Publications

[12] M.Berz, SSC-152, 1988
 Leo Michelotti, IEEE PAC89, CH2669-0(1989)839.
 N. Malitskey, A. Reshetov and Y. Yan, SSCL-659,

1994.
[13] P. Selormey, "DotNetMatrix: Simple Matrix Library

for .NET", http://www.codeproject.com/KB/recipes/
psdotnetmatrix.aspx

[14] http://ironpython.codeplex.com
[15] http://www.mono-project.com
[16] J. Corbett, G. Portmann, A. Terebilo, PAC'03,

Portland, USA, p.2369(2003)
[17] http://msdn.microsoft.com/en-us/library/bb387098.

aspx

[18] H. Nishimura, R. J. Donahue, R. M. Duarte, D.
Robin, F. Sannibale, C. Steier, W. Wan, PAC'07,
Albuquerque, USA, p.1173(2007)

[19] H. Nishimura, S. Marks, D. S. Robin, R. D.
Schlueter, C. A. Steier, W. Wan, PAC'07,
Albuquerque, USA, p.1170(2007)

[20] H. Nishimura, C. Timossi, G. Portmann, M. Urashka,
C. Ikami and M. Beaudrow, PCaPAC'08, Ljubljana,
Slovenia, p.122(2008)

[21] G. Portmann, J. Corbett and A. Terebilo, PAC'05,
Knoxville, USA, p.4009(2005)

 http://www-ssrl.slac.stanford.edu/at/
[22] H. Nishimura, ICAP'98, Monterey, USA(1998).
 http://www.slac.stanford.edu/xorg/icap98/papers/F-

Tu06.pdf
 H. Nishimura and W. Decking, EPAC'98, Stockholm,

Sweden, p.1224(1998)
[23] http://msdn.microsoft.com/en-us/concurrency

Proceedings of ICAP09, San Francisco, CA THPSC035

Computer Codes (Design, Simulation, Field Calculation)

329

