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Abstract

For the development of high energy and high duty cycle
RFQs accurate particle dynamic simulation tools are im-
portant for optimizing designs, especially in high current
applications. To describe the external fields in RFQs, the
Poisson equation has to be solved taking the boundary con-
ditions into account. In PteqHI this is now done by using a
finite difference method on a grid. This method will be de-
scribed and simulation results will be compared to different
RFQ particle dynamic codes.

PTEQHI WITH POISSON SOLVER
PteqHI is a program to simulate particle dynamics in

RFQs. It has its roots in PARMTEQ and has continuously
been developed and adapted to meet several problems by R.
A. Jameson [1]. It describes the external field with the same
multipole expansion method than PARMTEQM and it also
uses the SCHEFF routine for its space charge calculation,
but it uses time as the independent variable. Simulations of
a set of 10 RFQs, which are similar to the IFMIF designs in
terms of final energy, frequency, emittance, beam current,
but with changing aperture have revealed same limitations
of these original methods.
This was one of the reason to change the way the electric
field is calculated along the RFQ. The new routines solve
the Poisson equation directly. This is done by a Solver that
uses the finite difference method on a grid.

Generating the grid

The first step is to set up the grid with the boundary
conditions figuring out which grid points lie in or on the
electrodes. The tip of the electrodes are found using the
cell table for the geometry data and interpolating them at
each z position using cubic splines. Once the tip position
is known the electrode is represented by an arc with a se-
lectable brake out angle. Since the boundary conditions at
the electrodes are Dirichlet boundary condition the voltage
±U0

2 is assigned to the grid points which lie inside the elec-
trodes. In order to describe the surface as smooth as possi-
ble the grid points are shifted in such manner that there is
always a grid point on the surface. Longitudinal boundary
conditions are more difficult to realize, because it cannot
be assumed that the structure is symmetric in longitudinal
direction. The small changes of the aperture and modula-
tion which disturb the symmetry can be seen in results of
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the solver. To overcome this problem many cells are com-
bined to a segment and calculated at the same time. Since
the segments overlap, the regions with are influenced by
the asymmetry are never used for the dynamic calculation.

Transition Region A real RFQ does not start directly
with the electrodes, but with a tank wall. So we decided to
let the particles start outside the tank wall, where the poten-
tial is close to zero. Then they drift through the small gap
between the electrodes and the tank wall seeing the rising
RF-field. The first segment of the RFQ includes the tank
wall, the gap, the radial matching section and the first two
regular cells of the RFQ to be able to simulate the effects
of the rising RF-field.

Space charge grid The space charge effect is also cal-
culated by solving the Poisson equation which a charge
density ρ �= 0. Therefore a second grid is needed which
is generated in the same way as the grid for the external
field, but with zero potential on the electrodes. By forcing
the potential to be equal to zero on the electrodes the image
effect is also taken into account directly, since the purpose
of the image effect is to make sure that the potential of a
conducting surface vanishes. There is also the option to
”turn off” the image effect by setting the boundary condi-
tion of the grid to a cylinder (e.g., radius m*a) with zero
potential on its surface. So the effect of the image charges
can be studied.

Poisson solver

For solving the Poisson equation the finite difference
method is used. This method is an iterative method where
at each iteration step the new value for a grid point is a
function of the old value of that point and the values of the
neighboring points

ϕ0,n+1 = F (ϕ0,n,Σ6
i=1ai · ϕi,n, ρ0), (1)

where ϕ is the potential at the point 0 and ρ0 is the charge
density at that point. Each pair of grid points has a certain
distance hi between them. The ai are a function of these
distances. In general the hi can vary from one pair of nodes
to the next, so that the shifted grid points can be taken into
account in order to represent the electrodes correctly with-
out introducing some kind of steps. From one iteration to
the next the value at each node converges to the exact an-
swer. The accuracy is limited by the hi. This basic method
is known as the Gauß-Seidel relaxation. For speeding up
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the time the solver needs to converge, a successive overre-
laxation (SOR) method can be used. The new value for the
node is than calculated as a combination of the old value
and the value from the neighboring nodes.

ϕ0,n+1 = ϕ0,n + ω (ψ − ϕ0,n) , (2)

where ω, ψ are a fixed relaxation parameter and the com-
bination of neighboring nodes. A further improvement in
calculation time can be achieved by increasing the relax-
ation parameter from 1 to its final value. This is called
Chebyshev acceleration. For further details see [2] [3].

SIMULATIONS
For studying the influences of the different simulation

methods and different simulation programs a set of 12
RFQs was designed with the same design strategy but with
different values for the minimum aperture. That leads to
a set of RFQs with different performances. Some have an
aperture which is too small (cases with a high a-factor) and
therefore a bad transmission. Other RFQs have quite big
aperture, but a bad ability to catch the beam longitudinally
(small a-factor). Overall, RFQs with a high or a low aper-
ture have a bad performance and in the middle there is op-
timum value for the aperture. The question is, does that
optimum depend on the simulation method which has been
used?
Figure 1 and 2 show the external field for the synchronous

Figure 1: Two Term field and field from the Poisson Solver
in the beginning of the RFQ for the synchronous particle.
Green curve is 10 times the difference of the two methods.

particle at the beginning and for the entire structure for one
of the RFQs with a high transmission. The black curve re-
lates to the field from the two term potential and the red
curve to the field found from the Poisson solver. The os-
cillation comes from the sinusoidal RF. The green curve
shows ten times the difference of the other two curves.
The differences appear mostly in the beginning of the RFQ
and at the end where the amplitude of the field has in-
creased. The major discrepancy is in the region closer

to the electrodes where the Two-term-potential assumes a
pure quadrupole shape which can differ a lot from the real
geometry.

Figure 2: Two Term field and field from the Poisson Solver
for the entire RFQ for the synchronous particle. Green
curve is 10 times the difference of the two methods.

Space charge and image effect

Δ

Figure 3: Momentum Δpx for a specific particle, compar-
ing SCHEFF and Poisson space charge solver with image
effect.

The basic routine for space charge calculation in pteqHI
as well as PARMTEQM [4] is SCHEFF routine. It is a two
dimensional routine assuming cylindric symmetry. So it is
normally called once per cell when the shape of the beam
is round. There are transformations for a non-cylindrical
beam. SCHEFF represents the beam by charged rings and
calculates analytically the effect of charged rings on rings.
Figure 3 and 4 show the resulting change of the momentum
(Δpx and Δpz) for a specific particle over the entire RFQ
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with image effect turned on and figures 5 and 6 with the im-
age effect turned off. The Poisson solver was used to drive
the space charge calculation and SCHEFF ran passively to
get the corresponding momentums. The basic shape of the
curves are very similar, but when the particle has left the
center of the beam and the amplitude of the space charge
effect increases a difference between the two curves can be
seen in any case.

Δ

Figure 4: Momentum Δpz for a specific particle, compar-
ing SCHEFF and Poisson space charge solver with image
effect.

In figure 6 it can be seen that the amplitude of the lon-
gitudinal momentum change from the Poisson solver with
image effect turned off is lower than the with image effect
on (Fig. 4). This is due to the fact that the potential was
forced to be zero on the cylinder with the radius of m · a,
but the transverse results are very similar (Figs. 3 and 5).

Figure 5: Momentum Δpx for a specific particle, compar-
ing SCHEFF and Poisson space charge solver with image
effect turned off.

Figure 6: Momentum Δpz for a specific particle, compar-
ing SCHEFF and Poisson space charge solver with image
effect turned off.

Results

Figure 7 and 8 show the transmission and the percentage
of accelerated beam for the set of RFQs. All curves have
in common, that they have a peak for a certain RFQ. The
transmission and the percentage of accelerated beam dif-
fer for the RFQs with a small a-factor and therefore with
a rather big aperture. Once the aperture is small enough,
all particles get accelerated or radically lost. The black
curve is the standard pteqHI using the multipole expansion
method for the external field and SCHEFF for the space
charge routine without the image effect. Its peak is at a
a-factor of 41 to 48 and then it falls of in both directions.
For the red curve the external field was described using the
Poisson solver and SCHEFF was used for the space charge
calculation. The curve is similar to the black one with the
same peak, but it does not fall off as fast on the right side as
the multipole expansion method curve. When the Poisson
solver (with image effect turned off) is used for the space
charge calculation as well (green curve), the shape of the
curve and the position of its optimum change. The peak of
the curve is shifted to the left to wider apertures. But the
value for the maximum transmission is nearly the same.

This suggests that the treatment of the space charge ef-
fect has big influence on the simulation and should there-
fore be the focus for further studies.

Image charge

As shown above the inclusion of the image charge has
an effect on the corresponding change of momentum. In
Fig. 9 the effect of the image charge is shown. For a
big a-factor the image charge will cause the transmission
to drop down (small aperture). For the optimum of the
curve the transmission increases with the image charge and
on the left hand side it just has a minor effect. The image
charge becomes important when particles come close to the
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Figure 7: Transmission for the set of RFQs with different
simulation methods

Figure 8: Percentage of accelerated beam for the set of
RFQs with different simulation methods

electrodes. This happens more easily when the aperture is
small. That can explain, why the transmission drops on the
small aperture side. When the aperture is wide enough and
the core of the particles stays away from the electrodes the
image effect should not make a big difference.

COMPARISONWITH OTHER CODES

Comparing different codes has been a tedious task. One
has to make sure, that the different programs simulated the
same RFQ with the best match. Some codes start directly
with the electrodes while others start the beam inside the
tank wall. There were some hidden tricks one needs to
know to make the program do what it is supposed to do.
Often one must deal with a “black box” with sometimes
no support from the coder. That was one major reason for
writing an open-source Poisson solver where it is known,
what is inside and what decisions have been made.

Figure 9: Effect of the image charge on transmission and
accelerated particles.

CONCLUSION
For detailed beam dynamic simulation of high current,

high power and high energy applications, accurate simu-
lation tools are needed that treat the involved physics cor-
rectly and use as few assumptions as possible. One step
in that direction has been made by replacing the old multi-
pole expansion method, the SCHEFF routine and the image
charge routine with a 3D Poisson solver. It has been shown,
what the effects of the routines are and how they change the
results of the simulation.
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