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Abstract

Nonlinear programs are widely employed in particle ac-
celerators and storage rings to compute machine settings
for optimal model-predictive control of beam parameters.
Conventional iterative methods today suffer from problems
with finding the global optimal solution when the start so-
lutions are outside the basin-of-attraction for a given objec-
tive function to be minimized. A new iterative matrix in-
version global optimization (IMIGO) method [1] has been
developed to overcome this limitation. IMIGO unlike the
existing iterative nonlinear solvers, it calculates only the
Jacobian vector of the objection function and not the Hes-
sian matrix at each iteration-this unique feature has led to
a new application of IMIGO for optimization of electron
beam parameters for cases when a model is unavailable or
only an inaccurate model is available. Some possible appli-
cations of this IMIGO-based model-independent optimiza-
tion method will be presented in the paper.

INTRODUCTION

A nonlinear program is a solver typically employed to
find the global minimum of a given objective function sub-
jected to certain conditions known as constraints. For op-
timization of beam parameters, (b1, b2, · · · , bn), the con-
trol variables are the strengths or settings of a group of
accelerator elements, (a1, a2, · · · , am), that are used to
control these beam parameter values. In general, an ob-
jective function is defined as a function of the beam pa-
rameters. Since each of the beam parameters is a func-
tion of the control variables, the value of a given ob-
jective function is determined by the values of the con-
trol variables, fobj(a1, a2, · · · , am). In beam parame-
ter optimization, the start values of the control variables
(astart

1 , astart
2 , · · · , astart

m ) are known. Nonlinear programs
are used to find the lowest value of a given objective
or ‘cost’ function for the values of the control variables
within given bounds: Δk > (ak − astart

k ) > −Δk for
k = 1, 2, · · · , m. When the absolute minimum value of the
objective function is found, fobj ⇒ fmin

obj , the set of vari-
able values is commonly referred to as the global minimum
solution: (asol

1 , asol
2 , · · · , asol

m ).
The inherent difficulty of using an iterative method to

find the global-minimum solution is well known. In gen-
eral, an iterative method requires an initial guess solution.
If this start solution is too far from the global-minimum
solution, the program will find only a local-minimum solu-
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tion. This problem is known as the basin-of-attraction limit
(BOA). A BOA is defined to be the biggest region around
a given minimum solution. The problem with the existing
iterative nonlinear programs is that they will only find the
actual solutions for a special case in which the start solution
is inside the BOA corresponding to the global-minimum
solution. The new nonlinear programming method IMIGO
provides a mitigation to this limitation.

Existing nonlinear programs can be classified into two
basic types: One uses an analytical iterative method and
the other relies on a stochastic search method such as a
genetic algorithm. The inherent difficulty of using an iter-
ative method to find the global-minimum solution is well
known. In general, an iterative method requires an ini-
tial guess solution. If this start solution is too far from
the global-minimum solution, the program will find only
a local-minimum solution. As an illustration, a surface plot
of the objective function for a minimization problem with
two variables is shown in Fig. 1. This figure shows the lo-
cations of local-minimum points and the global-minimum
point.
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Figure 1: Object function of two variables.

AN OVER VIEW OF IMIGO

IMIGO, like conventional solvers, finds the solution by
solving the following set of equations iteratively starting
from a given start solution:

fk(a1, · · · , am) = ∂fobj/∂ak = 0 (1)

for k = 1, 2, · · · , m .
One unique feature of IMIGO is that it solves these

equations without the using the values of the derivatives:
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∂fj/∂ak = 0 for j, k = 1, 2, · · · , m, i.e., Hessian ma-
trix [1]. In other words, IMIGO is a non-derivative based
solver. The iterative process in OASIS is shown in Fig. 2.
When the values of the variables converge, the set of val-
ues of the variables at the end point is a solution that cor-
responds to a minimum, maximum, or saddle point of the
objective function. This unique feature has led to a sim-
ple two parameter (s, p) search method to find the global
minimum of the objective function.

Figure 2: Block diagram of the iterative process to find a
solution that minimizes the value of a given objective func-
tion.

A main advantage of IMIGO is that it can find the
global-minimum solution even when the start solution is
not within the BOA corresponding to the global-minimum
solution. Another salient feature is that it can search for
a path that ends at the global-minimum solution indepen-
dent of the size and complexity of a given problem, i.e.,
the problem and the objective function can include many
variables and the problem may be very non-linear. To use
IMIGO, the user makes a guess on the variable values at
the start point for a given objective function to be min-
imized. The user also imposes specific upper and lower
bounds on each of the variables. IMIGO first uses an ex-
haustive search method to find the start values of the two
convergence control parameters.

A Two-Variable Problem

As an illustration of how OASIS works, the results ob-
tained for a typical small-scale minimization problem with
two variables a1 and a2 are presented [2]. In this exam-
ple, the same bounds, Δ = 0.2, are imposed on the values
of both bounded variables: Δ > (ak − astart

k ) > −Δ for
k = 1, 2 with astart

1 = 100 and astart
2 = 102. Figure 3

shows a plot of the objection function for a solution path
starting at a given point and ending at the global minimum
point. It can be seen from this plot that, because IMIGO
is a non-Hessian-based algorithm, the objective function
values it finds for points on the solution paths first rise
above the objective function value at the start point before
falling toward zero at a minimum point: aend

1 = 100.13
and aend

2 = 102.04. Figure 4 also shows another special
feature of OASIS Pathfinder-Its unique ability to find the
global-minimum solution when the start point is outside of
the BOA of the global-minimum point.

An Eight-Variable Problem

As an application of IMIGO to a real accelerator project,
we have used IMIGO to optimize the two bunch compres-
sor setting for the LCLS at SLAC [3]. The objective func-
tion is formed to set the final electron rms bunch length,
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Figure 3: Variation of objective function on solution paths
to the global minimum.
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Figure 4: Plot of a solution path that ends at the global
minimum point.

the final centroid energy, and the final energy chirp along
the electron bunch; and simultaneously minimize the rms
bunch length fluctuation and the final energy chirp fluctua-
tion. The objective function is a function of eight variables:
the LINAC acceleration phase and total acceleration volt-
age in the three linac section, and the R56 of the two bunch
compressors. As an example, the objective function as a
function of the two LINAC section (L1 and L2) phases is
shown in Fig. 5. However, as described about, even though
this is an eight-dimensional optimization, IMIGO in fact
does the search in two-dimension, namely in the (s, p) 2-
dimensional space. The IMIGO was able to find minimum
solution. Yet, the model in Ref. [3] does not include the
space charge effect or the coherent synchrotron radiation
(CSR) effect. Going into more detailed study with space
charge and CSR effects are time consuming with numer-
ical simulation, and is not easy to get a closed analytical
expression for the objective function. Hence in the follow-
ing we will discuss the possibility of using IMIGO to do a
model independent beam optimization. The machine is in
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Figure 5: Objective function varies with L1 and L2 phases.

fact the ‘model’, and the measurement data is the output of
the ‘model’. Directly working with the machine measure-
ment data, one can also optimize the system by running
IMIGO to tell how to set the machine parameters. Hence
this is the model-independent approach.

MODEL-INDEPENDENT BEAM
OPTIMIZATION

In reality, as described above, normally the model is ei-
ther too simplified compared to real situation, if an analyt-
ical expression for the objective function is needed; or the
model can be time-dependent, which will need the control
system to be self-adaptive or at least to have a dynamics re-
sponse function. Therefore, staying with an over-simplified
model, or using a static model for a dynamic system will
lead to the malfunction of the accelerator system. A model-
independent analysis is therefore needed.

Figure 6: Illustration of the flowchart for model-
independent beam optimization.

Shown in Fig. 6, we show the difference between
a model-independent optimization and a conventional
model-based optimization. In the model-based case, the
model is first validated and then the objective function is
either constructed analytically or numerically. While in the
model-independent case, the real machine measurement
data are used to form the objective function.

As emphasized above, since IMIGO is a non-Hessian al-
gorithm, the real measurement data even though will error,
can provide objective function accurate enough for IMIGO
to find the global minimum. As the follows, we describe a
Gedanken experiment to do model-independent beam opti-
mization for a space charge dominated beam. We assume
that the machine will deviate from the single particle model
significantly, i.e., the space charge is not negligible.

Since the space charge effects are small at low beam
current, the objective function predicted from the single-
particle model is approximately equal to the value mea-
sured on the real accelerator. As the beam current in-
creases, the measured value of the objective function
changes. Thus, the size and shape of the BOA of the ob-
jective function are different for different beam currents.
Since the global-minimum solution is at the ‘bottom’ of
the BOA, its value is also different for different beam cur-
rents. By replacing the model-predicted objective function
with the measured objective function, IMIGO can be used
to find the global minimum solution for any desired value
of beam current without using the model as shown in Fig.
6. In practice, the optimization process can be carried out
incrementally by repeating it over many min-step current
changes. As long as the global minimum solution for the
previous step is within the BOA of the objective function of
the next step, the global minimum solution for the desired
beam current will be found.

DISCUSSION

In this paper, we introduce a new nonlinear optimiza-
tion package, called IMIGO. We demonstrate the power of
IMIGO by both working out a detailed challenge example
normally associated with the famous Levenberg-Marquardt
method. It is shown that IMIGO can find the global mini-
mum even if the start value is out of the BOA of the global
minimum. We also demonstrate that IMIGO can solve real
accelerator optimization problem as in Ref. [3]. Further-
more, with IMIGO a model-independent beam optimiza-
tion is possible. Additional research is being conducted
to find the global optimal solution for other objective func-
tions such as luminosity and beam lifetime in colliders, and
Free Electron Laser peak power and brightness for light
sources.
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