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Abstract

Most charged particle beams under realistic conditions
have Gaussian density distributions in phase space, or can
be easily made so. However, for several practical appli-
cations beams with uniform distributions in physical space
are advantageous or even required. Liouville’s theorem and
the symplectic nature of beam’s dynamic evolution pose
constraints on the feasible transformational properties of
these density distribution functions. Differential Algebraic
methods offer an elegant way to investigate the underlying
freedom involving these beam manipulations. Here, we ex-
plore the theory, necessary and sufficient conditions, and
practicality of the uniformization of Gaussian beams from
a rather generic point of view.

INTRODUCTION

Several practical applications such as irradiation of tar-
gets for isotope production, uniform irradiation of detec-
tors for improved efficiency, irradiation of biological sam-
ples and materials for testing require manipulation of beam
density distributions. Typically, these applications require
uniform spatial distributions at the target location. How-
ever, most beams delivered by accelerators to these targets
are Gaussian. There are several approaches for uniformiza-
tion of Gaussian beams. One such method, the so-called
nonlinear focusing method, uses higher order multipoles
to provide a material-less, elegant, purely optical solution.
Prior work done in this direction, using nonlinear focusing
methods, can be found in [?] and references therein. In
this paper we present a new approach based on differen-
tial algebraic (DA) techniques to investigate the underlying
freedom involving these beam manipulations.

Background

Detailed understanding of the beam dynamics requires
the study of the motion of the reference particle as well as
the motion of the particle in the relative coordinates. The
position and momenta are usually sufficient to describe the
motion. Usually the arclength s along the reference orbit
is used as the independent variable. At each point on the
reference orbit it is possible to define an unique orthogonal
coordinate system, denoted by (é,, é,, é,), satisfying a cer-
tain set of conditions [?, ?]. In this coordinate system the
motion of the particles in the beam can be described using
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relative coordinates, which are given by

~ T,0 = i—,yb p”
Z(s) = —t), 6 = (E Eo)

where the position (x, y) describe the position of the parti-
cle in the local coordinate system, py is a fixed momentum
and Ej and t( are the energy and the time of flight of the
reference particle, a and b are the momentum slopes, E' is
the total energy, and k has a dimension of velocity which
makes [ a length like coordinate. The point 2 = 0 corre-
sponds to the reference particle.

Let position s;, sy be the initial and final position on the
reference orbit. The transfer map or transfer function M
relates initial conditions at s; to the conditions at sy via

Z(sy) = M(si,57) (Z(s0)) - (D

For weakly non-linear systems, like an accelerator system,
the map can be expanded as a Taylor series. Implementa-
tion of such a map on a computer would require the map to
be truncated at a certain order. A detailed discussion of the
properties and use of the Taylor transfer maps can be found
in [?].

Beam Phase Space Density Function

Beam production mechanism usually determines the
phase space density function describing the distribution of
particles in the beam. Let function f (Z;) be the initial
phase space density function of the beam. According to
Liouville’s theorem, as long as the sytem can be consid-
ered a Hamiltonian system, the phase space distribution of
the beam will stay constant along the trajectories. It also
implies that the the volume of phase space occupied by the
beam is conserved. Hence, it can be written that

f(Z) =9(Z), 2

where ¢ is the final phase space density function at any
point sy along the reference orbit. In terms of the transfer
map of the system (1), (2) becomes

1(zfaaf7yfabf36f)
3
where (z¢,af,ys,by,d¢) are the initial and final phase
space coordinates. The function g (x,as,ys, by, dy) is the
new phase space density function, M (s;, sy) is the trans-
fer map of the system. For most practical application the

gz ap,yr,by,dp) = foM (si,sy)"
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quantity that is more useful is the density function in po-
sition variables. This can be obtained by integrating the
phase space density function, g, with respect to the mo-
mentum and energy spread variables,

p(xyyr) =

///g(xf,af,yf,bfﬁf)'daf'dbf'd5f

Gaussian Density Function Most charged particle
beams under realistic conditions have Gaussian density dis-
tributions in phase space, or can be easily made so. To keep
the discussion reasonably simple, we restrict ourselves to
an initial uncorrelated Gaussian distribution. This is with-
out loss of generality, since the formalism can be applied
essentially without change to the general, correlated Gaus-
sian situation. The Gaussian density function in phase
space, f (z,a,y,b,d), is given by

f(xaaay7ba5) =
7(137/1%)2 _ (af.“'a)z
20% 203
_y=my)®  (mw)®  (5—ps)®
207 207 202

Kexp

where iz, fq, ly b, fts and 04,04,04,04,05 are the means
and variances in x,a,y, b, respectively, and the factor

K =1/ ((27?)5/2 03040,0505 | is a normalization con-
stant.

Computation of Beam Density Function Using
Differential Algebra

For a beam with initial Gaussian density distribution in
phase space a DA based technique has been developed to
compute the density function at end of a beam-optics sys-
tem, given by a transfer map M. For simplicity we de-
scribe the technique for a one dimensional case. The initial
phase space density function at point s; is given by,

(i,0:) = K (i = p2)” (@5 = pa)”
f Ti,Q;) = 2€Xp | — 20':%1 _ 202i ;
“)

where Ko = 1/ (20,04, ). Without loss of generality we
can assume (i, = [tg, = 0. We denote the exponential in
the above equation as h (z,a) ,

1 /22 a2
Z; a;

To compute the density function, p (), at point sy on
the reference orbit, we need to solve the integral

plxy) = /,Oo Kexp (h) o M (si,s7)” " (2, ar) day

:/ K exp (ho/\/l(shsf)*l) (xf,af)day.
4)
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Since the integration limits tend to infinity the above in-
tegral is difficult to solve directly using numerical tech-
niques. By changing the form of the integral to a Gaussian
integral and applying a perturbation method to evaluate the
the integral term-by-term, one can use the following closed
form solution for each term [?]:

/ Z" exp (fozz2 + Bz + fy) dz =

— 00

p 62 In/2| n (Qﬁ)n_Zk
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Below we describe the steps to change the form of the in-
tegral in equation 5:

1. Compute the inverse map, M (s;, sf)fl, to a pre se-
lected truncation order IV [?].

2. Compute h o M (s;, sf)_1 and arrange the resulting
polynomials in powers of as by collecting its coeffi-
cients A,,. We express this as a sum of second order
polynomial and remainder term R 3,

h(x;,a;) o M (s4, sf)_l =
Ao (xf) + Ay (zg) ap + As (x5) aF + Rs (w5, a5)

N
Rs(xf,ar) = ZA" (zy)af.

n=3

3. Expand the exponential of the remainder term
Rs (xf,ar) in Taylor series and arrange the result-
ing polynomial in powers of ay by collecting its co-
efficients C;, exp (R3 (zf,a¢)) = Zjvzg Cj (zy) a}.
The equation 5 can now be rewritten as,

N oo

plep) =K C (l’f)/
=3 —oo
ai} exp (Ao (zy) + A1 (zf) ay + As (2) a?) day.
@)

The equation is the desired form where we can utilize
the Gaussian integral formula, equation 6. The same
procedure, essentially without any change, will work
for the 5D case too, where the steps shown above are
performed one-by-one for each integration variable a,
b and 0.

APPLICATIONS

We consider a system with an octupole magnet and a
quadrupole magnet, separated by a 20cm drift. The setup
is followed by a 110 cm drift to the final image. Each mag-
net is 25cm in length and 20cm full aperture. Both the
transverse beam optics, in coordinates (x, a,y,b), and ki-
netic energy spread are considered for the simulation. A
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Figure 1: XY distribution plot and the histogram plot of
10000 particles at the entrance of the system.The beam has
Gaussian density distribution in phase space.

100MeV proton beam with RMS emittance, ¢, = ¢, =
2 x 107? and 5% kinetic energy spread is considered. Us-
ing the DA technique described in the section , the beam
density function at the final image is computed as a Tay-
lor expansion in position variables. By using the poletip
field of the octupole magnet as a fit parameter, the lower
order coefficients in the Taylor expansion of the beam den-
sity function are minimized leading to a near uniform beam
density distribution with resonable octupole strengths. Fig-
ures 1 and 2 show the x — y distribution and histogram in
and y for the beam at the start and end of the system. It can
be noticed from the figures that the beam density function
changes from a Gaussian distribution to a near uniform one.
The uniformity can be improved in principle by the use of
even higher order multipoles, if necessary.

SUMMARY

We showed that DA-based methods are powerfull and
very general methods for applications to beam uniformiza-
tion of Gaussian beams. The main ingredients of the
method are DA-based methods that allow transfer map
computation and inversion of arbitrary lattice maps, Li-
ouville’s theorem, and a novel application of closed form
Gasussian integrals to this setting. Unlike previous meth-
ods, our method is free of assumed correlations in the initial
beam distributions, it is as easy to work with in 5D as it is
in 2D, takes into account arbitrary lattice nonlinearities to
any desired order, and the optimization of the system can
be automated. The method has been implemented in the
code COSY Infinity [?, ?]. More detailed studies and ap-
plications, including the available freedom in phase space
manipulations will be published in forthcoming papers.
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Figure 2: XY distribution for 10000 particles at the final
image.
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