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Abstract

Standard 2D magnetodynamic finite-element models for
accelerator magnets are accomplished by dedicated mod-
els for the aperture and for the beam-tube end parts. The
resulting hybrid and coupled models necessitate the appli-
cation of specialized algebraic solution techniques in order
to preserve the computational efficiency, i.e., matrix-free
iterative solvers combined with fast Fourier transforms and
Schwarz-type preconditioners.

INTRODUCTION

3D finite-element (FE) models of accelerator magnets
may become prohibitive when transient phenomena at
small temporal and spatial scale should be resolved, i.e.,
eddy current effects in windings, beam tube and yoke or
filamentary and coupling effects in superconductive cables.
Simulation times of several hours have been reported. As
a consequence, such calculations are only feasible at later
stages of the design process, when geometry, materials and
operating conditions are more or less fixed. At an earlier
design stage, parameter variations and optimization steps
are carried out, almost exclusively on the basis of semi-
analytical formulae. It makes sense to support this design
phase by FE models that succeed in attaining lower but ac-
ceptable accuracies within substantially smaller simulation
times, compared to transient 3D simulation [3]. Efforts in
the direction of this goal consider 2D FE models where
extensions are implemented that deal with typical 3D ef-
fects and model some small-scale effects in a problem spe-
cific way. In this paper, two extensions for 2D and 3D FE
models are proposed. The high-resolution aperture model
and the beam-tube end model developed here, both signif-
icantly increase the modeling power for superconductive
magnets and succeed in keeping the computation time for
transient 2D FE simulation as low as a few minutes.

APERTURE MODEL

Domain Decomposition and Mixed Formulation

The magnet geometry is divided in two parts: an outer
domain Ω1 including the windings and yoke and a cylindri-
cal inner domain Ω2 in the magnet aperture (Fig. 1). The
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Figure 1: Magnet model: FE mesh for the outer part and
tensor-product grid for the aperture.

interface is denoted by Γ12 = Ω1 ∩Ω2. A mixed magneto-
quasistatic (MQS) formulation is applied:

∇×
(
ν∇× �A

)
+ σ

∂ �A

∂t
= �Js in Ω1 ; (1)

−∇ · (μ∇ψ) = 0 in Ω2 , (2)

where �A is the magnetic vector potential, ψ the magnetic
scalar potential, �Js the applied current density, μ the per-
meability, ν = 1/μ the reluctivity and σ the conductiv-
ity. The normal continuity of the magnetic flux density
�B = ∇× �A = −μ∇ψ and the tangential continuity of the
magnetic field strength �H = ν∇× �A = −∇ψ are enforced
at the interface Γ12. The domains are equipped with dif-
ferent formulations that are dual with respect to each other.
The MQS formulation in terms of �A is capable of consider-
ing the eddy current phenomena in the yoke, beam tube and
windings, at the expense of being a vectorial partial differ-
ential equation (PDE). On the contrary, the MQS formula-
tion in terms of ψ is static but is a scalar formulation. Such
so-called mixed formulations have been frequently used for
MQS simulation in the eighties, especially because of the
relatively small number of degrees of freedom which was
beneficial for the direct and Krylov-type solvers used at that
time [11]. A drawback of a mixed formulation is the fact
that the computed magnetic energy and power loss do not
converge monotonically with respect to the mesh size as is
the case for the non-mixed formulations. The motivation
for choosing a mixed formulation will become clear below.

Discretization and System Properties

�A is discretized in Ω1 by the standard lowest-order edge
elements �wj , whereas ψ is discretized in Ω2 by standard
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lowest-order nodal elements Nq:

�A =
∑

j

uj �wj in Ω1 ; ψ =
∑

q

vqNq in Ω2 . (3)

where the degrees of freedom (DoFs) for �A and ψ are
stored in the vectors u and v, respectively. The applica-
tion of the Ritz-Galerkin approach results in the coupled
system of equations[

K + M d
dt

B
BT −G

][
u
v

]
=
[

f
0

]
, (4)

further also denoted by Ax = b [1]. Eq. (4) is transferred
in frequency domain or discretized in time by any implicit
time-integration technique. For conciseness, this is not ex-
plicitly carried out in the formulae. The matrix entries are

Kij =
∫

Ω1

ν∇× �wj · ∇ × �wi dΩ ; (5)

Mij =
∫

Ω1

σ �wj · �wi dΩ ; (6)

Biq = −
∫

Γ12

(∇Nq × �wi) · d�Γ ; (7)

Gpq =
∫

Ω2

μ∇Nq · ∇Np dΩ ; (8)

fi =
∫

Ω1

�Js · �wi dΩ . (9)

The matrices K and M are both sparse, symmetric and pos-
itive semi-definite. The zero eigenvalues of K are related
to the undetermined gradient fields, whereas the zero eigen-
values of M are related to the non-conductive model parts.
The MQS formulation in terms of the magnetic scalar po-
tential leads to a sparse, symmetric, positive definite system
matrix G. The mixed system (4) is sparse, symmetric and
indefinite. The indefiniteness is related to the mixed char-
acter of the formulation. If the inverse of G can be obtained
or applied in a cheap way, the possibility exists to turn over
to the Schur complement system⎛

⎜⎜⎝K + M
d
dt

+ BG−1BT︸ ︷︷ ︸
S

⎞
⎟⎟⎠u = f . (10)

The Schur complement matrix S is symmetric and positive
semi-definite. S contains large dense blocks due to G−1.
Its application in the form of (10) is therefore substantially

more expensive than the application of K + M d
dt

. The
sparsity structure of the Schur complement system is the
same as for a FE, boundary-element (BE) coupled formu-
lation where the normal derivatives are eliminated [8].

The mixed system can be solved by the Minimal Resid-
ual (MINRES) method [10]. MINRES requires a positive
semi-definite preconditioner. As a first choice,

Ã−1
1 =

[
L̃−1 0
0 G̃−1

]
(11)

is proposed. Here, L̃−1 denote any possible positive semi-
definite approximation to (K + M d

dt
)−1 such as, e.g.,

an Incomplete Cholesky (IC) preconditioner or Algebraic
Multigrid (AMG) approach. As a second diagonal block,
an operator G̃−1 is used as an approximation to G−1.
It has been shown that the convergence of the MINRES
method with this preconditioner is not optimal, even if no
approximations are used for the diagonal blocks. Better is

Ã−1
2 =

[
S̃−1 0
0 G̃−1

]
(12)

where S̃−1 is an approximation to the inverse of S. If no
approximations are introduced, this preconditioner causes
the MINRES algorithm to converge in exactly 2 iteration
steps. The construction of an approximation to S is not
trivial. The additive Schwarz-type preconditioner

S̃−1
2 =

(
K + M

d
dt

)−1

+ BGB−1 (13)

is known to be a simple and effective possibility [12]. Al-
ternatively, it is possible to solve (10) by the Conjugate
Gradient (CG) method. As preconditioners, either the ap-
proximation S̃−1

1 = L̃−1 or the approximate inverse S̃−1
2

to the Schur complement system can be used.

Spectral Resolution and System Representation

The spatial resolution in the aperture can be improved
considerably by choosing an orthogonal set of basis func-
tions instead of the set of standard lowest order nodal
shape functions {Nq}. The cylindrical aperture domain
Ω2 = [−R,R] × [0, π[ × [−Z,Z] has a radius R and a
length 2Z centered with respect to the z = 0 plane. In
the spectral-element (SE) approach, basis functions of the
form

Mq(r, θ, z) = Tq1

( r
R

)
e−jλθ Tq2

( z
Z

)
(14)

are considered at a cylindrical tensor-product grid (Fig. 1).
In the r- and the z-direction, the shape functions vary as
Chebyshev functions, whereas in the θ-direction harmonic
functions are used. To avoid a clustering of collocation
points at the r = 0 axis, the r-coordinate is taken from
−R toR, the θ-coordinate is restricted to [0, π[ and an even
number of collocation points is used in the r-direction. The
matrices B = ZT QT D̂ and G = DHμD are available
in factorized form. Here, Z interpolates the fictitious in-
terface currents between the spectral collocation points of
the tensor-product grid and the edges of the FE mesh, Q
selects the spectral DoFs at the collocation points at the in-
terface, D = [ Dr Dθ Dz ]H and Dr, Dθ and Dz are
the spectral differentiation matrices along r, θ and z. The
particular choice of the collocation points allow to invoke
each of these differentiation matrices by means of the Fast
Fourier Transform (FFT):

Dr = Dθ = Dz = F−1UF , (15)
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where U is a diagonal matrix [13]. The spectral differen-
tiation matrices are fully populated. The operator Q can
be represented by an index set. The interpolation operator
Z is stored in a sparse matrix format. The coupling ma-
trix B has a sparse row structure related to the FE DoFs
and a dense column structure related to the SE DoFs. The
Schur-complemented FE-SE system is comparable to a FE-
BE coupled system [8] and equivalent to the FE system in
which the SE domains are considered as specialized Robin-
type boundary conditions applied at Γ12 [2].

A SE discretization is known to attain an exponential
convergence of the discretization error with respect to the
number of DoFs. Because a part of the model remains dis-
cretized by FEs, the convergence of the overall model is
limited to the convergence of the FE part. Nevertheless,
the SE discretization of the aperture allows to considerably
reduce the number of DoFs required to sufficiently resolve
the aperture field.

During the system-solving phase, most of the computa-
tion time is spent to the multiplication by the system matrix
and the application of the preconditioner. Commonly, the
matrices A and S are stored in a compressed way. The
preconditioner steps are available by operations on the fly
making use of the stored system matrices. This may be-
come inefficient for the coupled FE-SE matrices which are
substantially more dense than their pure FE counterparts.
The use of properly located collocation points allows for
the use of FFTs. Then, only the operations K + M d

dt
,

L̃−1 and Z are carried out using a sparse storage system.
Q corresponds to selecting a subset of the DoFs of v us-
ing an index set. Now, the matrices A and S are no longer
given explicitly and pure algebraic preconditioning tech-
niques such as e.g. IC, are no longer available. The pre-
conditioners Ã−1

1 , Ã−1
2 , L̃−1 and S̃−1

2 , however, remain
available.

The expected computational effort of a pure FE model
is of order O(n3), where n is a measure for the number of
DoFs counted along one spatial direction. This complexity
is related to the application of K, M and L̃−1. The applica-
tion of 2D FFTs scales like O(n2 lnn) which is asymptot-
ically below O(n3). Hence, the complexity of the coupled
FE-SE model is expected to be comparable to the complex-
ity of a pure FE model. This is no longer true when the
coupling matrices B and spectral system matrix G are rep-
resented by algebraic matrices. The full population of B
and G causes their application to scale by O(n4), which
would dominate the overall calculation.

Numerical Experiments

The different iterative solution techniques are compared
for a 2D quarter model of a superconductive dipole mag-
net. The iron yoke is substantially saturated. The yoke
and the windings are discretized by FEs where the aperture
is discretized by the spectral basis functions Mq(r, θ) =
Tq1

(
r
R

)
e−jλθ. The SE technique supports an easy calcu-

lation of the harmonic field coefficients that determine the

Table 1: Computation times (in seconds) for the proposed
iterative solution methods for the mixed FE-SE system and
the Schur complement system using the compressed row
storage (CRS) form or the matrix-free solution techniques
techniques; comparison with respect to a homogeneous
FE model used as a reference (indicated by the subscript
”ref”); approximation to FE system matrices are created
using the IC technique without fill-in.

model system solver precond. CRS matrix-free
FE Lref CG L̃−1

ref 27.23 -
FE-SE A MINRES Ã−1

1 9.06 11.02
FE-SE A MINRES Ã−1

2 8.55 7.56
FE-SE S CG S̃−1

1 78.34 5.58
FE-SE S CG S̃−1

2 55.34 3.25

quality of the accelerator magnet.
As an approximation to the FE system part, an IC factor-

ization without fill-in is used. The performance of the pro-
posed solution techniques is compared in Table 1, both in
the case where the system is assembled into a compressed
row storage (CRS) format and used in matrix form as in the
case where matrix-free techniques and FFTs are applied.
The experiments clearly illustrate the computational effi-
ciency of the matrix-free techniques. The FFTs solving the
SE subproblem are responsible for less than 10% of the
overall computation time. The experiments show that solv-
ing the positive semi-definite Schur complement system is
more efficient than solving the mixed system, as long as
matrix-free techniques are used. The numerical tests in-
dicate the advantage of a additive-Schwarz-type precon-
ditioner over a preconditioner only accounting for the FE
part. When carried out using matrix-free techniques, all
hybrid FE-SE discretizations outperform the model with a
pure FE discretization attaining a comparable spatial reso-
lution.

BEAM-TUBE MODEL

Beam-Tube Modeling

The beam tube in an accelerator magnet consists of a
thin pipe with a circular or elliptical cross-section. The
beam tube should support the inner vacuum and is com-
monly made of conductive material in order to carry a blind
current. During the ramping of the magnet, eddy currents
are generated in the beam tube. These currents cause addi-
tional losses and may deteriorate the quality of the aperture
field. The calculation of these eddy currents necessitates
transient simulation, which is time consuming, particularly
in combination with 3D FE models [5]. Explicitly resolv-
ing the beam-tube thickness is commonly avoided in order
to restrict the model size. Moreover, as accelerator mag-
nets exhibit a translational symmetry, relevant simulation
results can already be generated on the basis of 2D FE mod-
els. A 2D model is not capable of modeling the closing
paths of the beam-tube eddy currents at the front and back
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Figure 2: Accelerator magnet with beam tube: computa-
tional domain and magnetic flux lines.

side of the accelerator magnet. These closing paths are ex-
pected to have a significant influence on the distribution
of eddy currents along the circumference of the beam-tube
cross-section. This section is dedicated to the addition of a
model part accounting for these closing paths.

2D FE Model and Thin-Sheet Approximation

The central part Ω1 of the accelerator magnet is transla-
tionally symmetric along the z-direction: Ω1 = Γ1 × 	z
where Γ1 is the cross-section and 	z is the length along the
z-direction (Fig. 2). The translational symmetry of Ω1 is
reflected in the choice of the edge shape functions �w j for
discretizing the magnetic vector potential �A:

�wj =
Nj(x, y)

	z
�ez (16)

where Nj(x, y) are lowest-order nodal shape functions de-
fined at a triangularization of Γ1 and �ez is a unit vector in
the z-direction.

The thickness δ of the beam tube is much smaller than
the skin depth

δskin =
√

2
ωσtubeμtube

. (17)

related to the beam-tube conductivity σtube and permeabil-
ity μtube and expected for the relevant angular frequencies
ω. This allows to assume a current density which is homo-
geneously distributed along the beam-tube thickness. The
cross-section of the beam tube with Γ1 can be represented
by Υtube× [− δ

2 ,
δ
2 ] where Υtube is a contour in Γ1 (Fig. 2).

The beam-tube cross-section is not explicitly resolved by
the mesh. The eddy currents in the beam tube are included
by augmenting the conductance matrix Mσ with the line

integrals

Mthin
σ,ij =

∫
Υtube

σtube �wj · �wiδ	z ds (18)

where σtube is the conductivity of the beam-tube material.
This approach corresponds to the most simple form of a
thin-sheet model [9, 7]. In this paper, this 2D thin-sheet
model is accomplished by an additional treatment for mod-
eling the closing paths of the beam-tube current.

End Effects

End effects are the effects due to the broken translational
symmetry at the front and rear sides of the model. In the
center of the magnet, the beam-tube eddy currents are per-
pendicular to the magnet cross-section. At the end parts,
some of the current lines may proceed to the next magnet
and other current lines may close in a more or less circular
path on the surface of the beam tube. The fact that the dif-
ferent closing paths feature a different impedance, disturbs
the translational symmetry of the model. The constructed
2D FE model considers a perfectly conductive connection
at the front and rear end. Several approaches exist to ac-
count for the additional impedances of the closing paths,
while sticking to a 2D model. A common approximation is
to consider the beam-tube parts exceeding the magnetically
active part by decreasing the conductivity of the beam-tube
material, i.e.,

σtube → σtube
	z + 	end

	z
(19)

where 	end denotes the length of the outside beam-tube
parts. This approach does not account for the consider-
ably longer closing paths of the beam-tube currents at the
magnetic symmetry plane compared to those at the electric
symmetry plane (Fig. 2).

Beam-Tube End Model

Besides the magnetically active model part Ω1 = Γ1 ⊗
[0, za], an additional domain Ω3 = Γ3 ⊗ [− δ

2 ,+
δ
2 ] is con-

sidered (Fig. 2). Here, Γ3 = Υtube ⊗ [za, zb] is the beam-
tube surface outside the active magnet part. By construc-
tion, the intersection of both domain parts is Ω1 ∩ Ω3 =
Υtube ⊗ [− δ

2 ,+
δ
2 ]. The coupled formulation reads

∇×
(
ν∇× �A

)
+ σ

∂ �A

∂t
+ σ∇ϕ = �Js in Ω1 ;(20)

−∇ ·
(
σ
∂ �A

∂t

)
−∇ · (σ∇ϕ) = 0 in Ω3 ,(21)

where ϕ is the electric scalar potential. In Ω1, the elec-
tromagnetic field is computed by (20), incorporating both
inductive and resistive field effects. In Ω3, the inductive ef-
fects are neglected with respect to the resistive effects. This
allows to use the stationary-current formulation.
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Discretization

The applied FE shape functions are

�wj(x, y, z) = Nj(x,y)
za

�ez in Ω1 ;
Pq̃(s, z) = Mq̃(s, za) z

z1
in Ω1 ;

Pq(s, z) = Mq(s, z) in Ω2

(22)

whereNj(x, y) andMq(s, z) are nodal shape functions de-
fined on triangulations of Γ1 and Γ3, respectively (Fig. 2).
The indices i, j ∈ I1, p, q ∈ I3 and p̃, q̃ ∈ I1 ∩ I3 and the
index sets I1, I3 and I1 ∩ I3 refer to the nodes of Γ1, Γ3

and Υtube = Γ1 ∩ Γ3, respectively. The potentials are{
�A =

∑
j uj �wj

ϕ =
∑

q̃ vq̃Pq̃
in Ω1 ; (23)

{
�A = 0
ϕ =

∑
q vqPq

in Ω3 , (24)

where the DoFs are gathered in the algebraic vectors u and
v. The DoFs vq̃ are a subset of all DoFs vq. They share the
shape functions Pq̃ defined in Ω1 and Pq defined in Ω3 and
therefore enforce the continuity of ϕ at Υ tube.

The FE shape functions serve for discretizing (20) and
(21) at Ω1 and Ω3, respectively. Eq. (20) is weighted by �wi

whereas (21) is weighted by the functionsPq . The resulting
coupled system of equations reads[

K + M d
dt

BT

B d
dt

G

][
u
v

]
=
[

f
0

]
(25)

where

Ki,j =
∫

Γ1

(
νy

za

∂Ni

∂x

∂Nj

∂x
+
νx

za

∂Ni

∂y

∂Nj

∂y

)
dA ;

Mi,j =
∫

Γ1

σ

za
NiNj dA ; (26)

fi =
∫

Γ1

Js,zNi dA ; (27)

Bp̃,j =
∫

Υtube

σ

za
Mp̃Njδ ds ; (28)

G =
∫

Γ3

σ∇Γ3Mp · ∇Γ3Mqδ dA . (29)

Here, ∇Γ3 denotes a gradient operator accounting for the
curvature of Γ3. This system is symmetric and positive
definite and can be solved by a preconditioned CG method.

Also here, it is possible to eliminate the additional de-
grees of freedom v related to ϕ from the system. The re-
sulting Schur complement system reads

Ku +
(
M − BT G−1B

) du
dt

= f . (30)

The matrix Mschur = M − BT G−1B can be interpreted
as a modified FE conductance matrix accounting for the
closing paths outside of the 2D cross-sectional model. It is
easily shown that Mschur is symmetric and positive semi-
definite, similar to M. Solving (30) can be done by a pre-
conditioned CG method, but may be computationally ex-
pensive because of the dense blocks BT G−1B.

SIMULATION RESULTS

The additional aperture and beam-tube end model parts
are applied in combination with a transient simulation of
the SIS-100 superconductive magnet which is part of the
Facility for Antiproton and Ion Research (FAIR) project of
the Helmholtzzentrum für Schwerionenforschung (GSI) in
Darmstadt, Germany [6]. The eddy-current losses in the
yoke have already been reported in e.g. [4]. 3D simu-
lations for the beam-tube losses have been studied in [5].
This paper is concerned with 2D simulations providing a
comparable accuracy at a significant lower computational
costs.

The elliptical cross-section of the beam-tube do-
main is parametrized by (ξ, η, z), i.e., (x, y, z) =
(ρ cosh ξ cos η, ρ sinh ξ sin η, z). The corresponding
Laplace-Beltrami operator is

∇2
Ω3

=
1

ρ2
(
cosh2 ξ − cos2 η

) ∂2ϕ

∂η2
+
∂2ϕ

∂z2
. (31)

The discretization of the model is carried out as described
above. The duty cycle of magnet operations is shown in
Fig. 3a. During the ramping of the aperture field, eddy cur-
rents are induced in the beam tube. The final mesh ob-
tained after a few adaptive mesh refinement steps as well
as the magnetic flux lines are shown in Fig. 3d. Fig. 3e
and Fig. 3f compare the equipotential lines for the elec-
tric scalar potential ϕ and the arrows for the electric field
strength for the connected and unconnected cases, respec-
tively. The figures correspond to the coordinate system
(ξ, z) and show a flat projection of the beam-tube surface
seen from above. The top side of the figure corresponds to
the interface Υtube between both model parts. The left and
right sides fall together with the magnetic symmetry plane.
The vertical center line falls together with the electric sym-
metry plane. The bottom side of the figure corresponds
to the connection of the beam tube to the next-in-line ac-
celerator component. The closing paths of the beam-tube
currents outside the magnetically active part depend on the
fact whether an electric connection exists to the following
component of not (compare Fig. 3e to Fig. 3f). The influ-
ence of this connection seems to be negligible. Neverthe-
less, the difference between the results for the model with
perfectly conductive front and rear planes and the results
for the model with the additional beam-tube end model, are
significant, which indicates the relevance of the beam-tube
end model. The double 2D model is substantially more
efficient than a full 3D model. Therefore, the computa-
tional resources can be spent to achieve a finer resolution
in the cross-sectional plane, e.g. to tackle the severe fer-
romagnetic saturation of the magnet yoke (Fig. 3d). The
beam-tube losses for the duty cycle of Fig. 3a are shown
in Fig. 3b. The dependence of the losses on time is mostly
constant because the aperture field is ramped at a constant
rate. Due to the saturation in the middle of the duty cycle,
the magnetic flux density does not increase further at linear
rate, which explains the slightly smaller beam-tube losses.
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Figure 3: Transient simulation results for the SIS-100 magnet: (a) magnetic flux density in the aperture; (b) power loss;
(c) sextupole field component; (d) mesh and magnetic flux lines at maximal aperture field; (e-f) distribution of the current
on the beam-tube end surface with (e) and without (f) electric connection to the next magnet.

The beam-tube eddy currents have a disadvantageous ef-
fect on the quality of the aperture field as is clear for the
sextupole component from Fig. 3c.

CONCLUSION

A cheap transient 2D FE model for accelerator magnets
becomes valuable by increasing the resolution of the aper-
ture by a SE discretization and by including end effects in
the beam tube by an additional 2D model. The relevance
of this technique is given by the fact that the overall tran-
sient simulation only takes a few minutes of calculation
time and, hence, can be inserted in a flexible design pro-
cess.
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