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Abstract 
An ultimate goal in accelerator physics is to produce a 

“zero-emittance” beam, which is equivalent to making the 

beam temperature the absolute zero in the center-of-mass 

frame. At this limit, if somehow reached, the beam is 

Coulomb crystallized. Schiffer and co-workers first 

applied the molecular dynamics (MD) technique to study 

the fundamental features of various Coulomb crystals. 

Their pioneering work was later generalized by Wei et al. 

who explicitly incorporated discrete alternating-gradient 

(AG) lattice structures into MD simulations. This paper 

summarizes recent numerical efforts made to clarify the 

dynamic behavior of ultra-cold and crystalline ion beams. 

The MD modeling of beam crystallization in a storage 

ring is reviewed, including how one can approach the 

ultra-low emittance limit. Several possible methods are 

described of cooling an ion beam three-dimensionally 

with radiation pressure (the Doppler laser cooling). 

INTRODUCTION 

Mutual Coulomb interactions among stored particles 

play a substantial role in beam dynamics especially when 

those particles are densely distributed in phase space 

[1,2]. The volume occupied by the particles in six-

dimensional phase space is called “emittance” that can 

directly be linked to the beam “temperature” measured in 

the center-of-mass frame. In theory, the emittance of a 

beam converges to zero (except for quantum noises) at the 

ultra-low temperature limit [3]. It can thus be said that 

space-charge-induced phenomena become more 

prominent as the emittance or temperature goes down. 

The emittance is approximately conserved if the rate of 

Coulomb collisions between individual particles is low 

[4]. That is basically due to the Hamiltonian nature of 

lattice elements (magnets, cavities, etc.) that only produce 

conservative forces. In practice, however, we almost 

always prefer a beam with a lower emittance. To meet this 

general requirement, we must introduce dissipative 

interactions into the system to “cool” the beam. Needless 

to say, the ultimate goal of cooling is to make the beam 

temperature the absolute zero. 

Many questions arise, however: is it really possible in 

principle to establish a zero-emittance state? Can such an 

ultimate state, if it exists, be stable? How does the beam 

look like at that limit? These questions have been 

answered since the mid 1980’s [5-13]. Schiffer and co-

workers first carried out systematic theoretical researches 

on strongly-coupled non-neutral plasmas by employing 

the MD technique [5-9], but their work was based on the 

smooth approximation that may eliminate possible 

realistic effects in cooler storage rings. This fact 

motivated the later, more sophisticated MD work by Wei 

et al. who took discrete lattice structures into account [10-

13]. Their MD simulations actually revealed essential 

differences between ultra-cold states in a uniform channel 

and those in an AG channel. Through all these continuous 

efforts, it is now strongly believed that stable zero-

emittance beams can exist, at least, in theory. 

The purpose of this paper is to give a brief review of 

computer modelling of ion beams in the ultra-low 

temperature regime. After showing the primary conditions 

to form and maintain a crystalline ion beam in a storage 

ring, we outline the MD method employed generally for 

crystalline-beam studies. We then proceed to the 

description of several cooling models including the 

Doppler laser cooling [14,15] that is currently the only 

solution toward beam crystallization. Although the 

Doppler limit is actually very close to the absolute zero, 

the powerful laser cooling force only operates in the 

longitudinal direction of beam motion [16,17]. It is thus 

necessary to somehow make it work three-dimensionally. 

For this purpose, we here consider the resonant coupling 

method (RCM) that can easily be implemented in a real 

storage ring [18,19]. Finally, a unique storage-ring lattice 

free from momentum dispersion [20,21] is described 

which can resolve the problem of “tapered cooling” 

[12,22]. 

CRYSTALLINE BEAMS 

Schiffer, Hasse and others numerically demonstrated 

that a system of many identical charged particles confined 

by a time-independent harmonic potential exhibits a 

spatially ordered configuration at the low-temperature 

limit [5-9]. This phenomenon is referred to as “Coulomb 

crystallization”. In this unique state of matter, the 

Coulomb repulsion among particles just balances with the 

external focusing potential. Suppose a coasting ion beam, 

for instance. If the line density is sufficiently low, all ions 

are aligned along the design beam orbit at equal intervals 

(string crystal). By increasing the line density, we can 

convert this one-dimensional (1D) configuration into a 

two-dimensional (2D) (zigzag crystal). The zigzag crystal 

is eventually transformed to a three-dimensional (3D) 

figure (shell crystal) if we put more ions in the beam. The 

threshold line density from a particular crystalline 

structure to another can be estimated from the Hasse-

Schiffer theory [8]. Similar structural transitions occur 

even for bunched beams. Figure 1 shows a typical multi-

shell Coulomb crystal predicted by a MD simulation. 
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When the external force is uniform and time-

independent as assumed in early papers on Coulomb 

crystals [5-9], each particle is frozen at a certain fixed 

point in the rest frame once the beam reaches a crystalline 

ground state. The situation is definitely different in a 

storage ring where the beam experiences periodic driving 

forces all the time. The periodic change of the focusing 

potential excites resonant instability under a specific 

condition satisfied. It is particularly important to avoid 

crossing linear (second order) resonance stopbands 

throughout a cooling process toward the absolute zero. To 

eliminate the possibility of dangerous resonance crossing, 

the bare betatron phase advance per lattice period must be 

less than 90 degrees [12,23]: 

    x ( y) < N sp / 4,                              (1) 

where 
    
( x , y)  are the horizontal and vertical betatron 

tunes, and Nsp  denotes the lattice superperiodicity of the 

ring. The time-dependency of the external potential also 

enhances heating from intrabeam scattering [24,25]; we 

thus need to provide sufficiently strong transverse cooling 

force to overcome this effect. Another primary condition 

pointed out by Wei et al. is the following: 

    
<

T
,                                    (2) 

which means that the beam energy  (the Lorentz factor) 

must be below the transition energy 
T

 of the ring. 

Various Coulomb crystals have now been realized 

experimentally in ion traps [26-28]. It is actually 

straightforward to produce an ultra-cold ion plasma in a 

trap by using the Doppler cooling technique. Figure 2 is a 

laser-induced fluorescence image of a 
40

Ca
+
 plasma laser-

cooled in a linear Paul trap. There is no doubt that a 

multi-shell crystalline structure has been formed. It is 

indeed possible to make string and zigzag crystals as well. 

This experimental evidence probably convinces many 

people that it must be possible to crystallize an ion beam 

in a similar way. In reality, however, nobody has 

succeeded in producing a crystalline beam in spite of 

serious attempts by European groups [16,17,29,30]. 

Although “moving” Coulomb crystals were generated in a 

ring-shaped Paul trap system [31,32], crystalline beams in 

a real storage-ring accelerator have the nature more 

complex than Coulomb crystals in such a compact low-

energy device. In addition, the lattice parameters are not 

so flexible which often prevents us from approaching an 

ultra-low temperature state [33]. How to achieve efficient 

3D laser cooling in a storage ring is also a big issue. 

MD APPROACH 

Periodic Boundary Condition 

The Particle-In-Cell (PIC) algorithm has often been 

adopted to study the dynamic behavior of space-charge-

dominated beams. Beam crystallization is, however, 

clearly beyond the scope of the PIC method that relies on 

spatial meshes and macro-particles. Since collective 

interactions over the whole beam and Coulomb collisions 

among individual particles both play an important role at 

low temperature, we have to compute the space-charge 

potential as precisely as possible. The best way is to 

simply sum up the Coulomb potentials of all particles, but 

that is indeed impractical even with a modern high-

performance computer when the beam consists of a large 

number of particles. 

In MD simulations, the so-called periodic boundary 

condition is employed to save computing time. We first 

slice the beam in the longitudinal direction and load some 

number of “real” particles (not “macro” particles) in the 

reference cell we are looking at. Within this particular 

cell, interparticle Coulomb interactions are calculated 

from the potential of the form 

short

( j)
=

1

(x x j )
2
+ ( y y j )

2
+ (z z j )

2
,         (3) 

where     (x, y, z)  is the spatial coordinates of a particle, and 

(x j , y j , z j )  the coordinates of one of the other particles. 

When the cell contains n particles, the short-range 

Coulomb forces acting upon the particle at     (x, y, z)  are 

evaluated by summing up Eq. (3) over all n 1 partners. 

 
Figure 1: Side view of a typical 3D Coulomb crystal 
numerically obtained with a MD simulation code.

 
Figure 2: Laser-induced fluorescence from a multi-
shell Coulomb crystal formed in a linear Paul trap at 
Hiroshima University. 

 
 

Figure 3: Periodic boundary condition 
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If n is not too large, the CPU time required for this 

process should be reasonable. Now, the question is how to 

compute the long-range Coulomb forces coming from 

other cells. The MD algorithm assumes that all 

longitudinal cells have an identical particle distribution at 

each integration step, as illustrated in Fig. 3. Then, the 

long-range Coulomb potential generated by the jth 

particle’s images in all cells can be reduced to the Ewald-

type integral [34]: 

long

( j)
=
2

L

cosh(kz
( j)
/ L)J0(kr

( j)
/ L) 1

ek 1
dk

0
,       (4) 

where L is the cell length, 
    
J

0
 is the Bessel function of 

zero-th order, 
    
z

( j)
= z z j      ( L / 2 < z

( j )
< L / 2) , and 

    
r

( j)
= (x x j )

2
+ ( y y j )

2 . Although the beam is not 

perfectly uniform in the longitudinal direction, this should 

be a good approximation because the total long-range 

potential is probably insensitive to the details of the image 

charge distribution. The cell length L should be neither 

too short nor too long, so that we have a proper number of 

real particles in the reference cell. It has been confirmed 

that, as long as the ratio n / L  is fixed, we always reach 

the same crystalline structure. 

Beam-Frame Hamiltonian 

In order to apply the periodic boundary condition, we 

have to observe the beam motion in the center-of-mass 

frame. Strictly speaking, the general relativity formalism 

is required to derive the correct equations of motion 

because the beam is not in an inertial system. Let us here 

suppose an ion beam travelling at the speed   c  with c 

being the light velocity. For simplicity, consider only 

dipole and quadrupole magnetic fields. Then, the beam-

frame Hamiltonian is approximately given by [35] 

H =
px
2 + py

2 + pz
2

2
xpz +

x
2

2 2

K (s)

2
x
2
y
2( ) +

rp
2 2

,

     (5) 

where the scaled canonical variables are 

(x, y, z; px , py, pz) ,  is the local curvature of the design 

beam orbit,     K (s)  corresponds to the focusing gradients of 

quadrupole magnets, rp  is the classical radius of the 

particle, and the independent variable is the path length 

  s = c t  with t being proper time. The scalar Coulomb 

potential is calculated in a MD code from 

= ( short

( j)
+

j long

( j)
) . Not surprisingly, H has the form 

identical to the well-known Hamiltonian for standard 

beam-orbit theories. We have developed a MD code 

“CRYSTAL” that integrates this Hamiltonian motion in a 

symplectic manner. Solenoid magnets, radio-frequency 

(rf) cavities, and other insertion elements can also be 

incorporated in the code, if necessary. 

When the beam is bunched, the CRYSTAL code 

automatically set the MD cell length equal to the rf bucket 

size, assuming that all bunches have an identical particle 

distribution. We have confirmed that, at low temperature, 

the Coulomb potentials from other bunches are generally 

quite weak. 

COOLING MODELS 

Cooling interactions must be introduced separately 

from the Hamiltonian framework because they are not 

conservative. Several cooling models can be considered 

in the CRYSATL code to study the dynamics of cold 

beams. 

Linear Friction 

The simplest cooling force is the linear 1D friction 

defined by 

pq = f q pq
in (q = x, y, z),

                   
(6) 

where 
  
fq  is the constant friction coefficient, and 

  
pq  

stands for the momentum change in q-direction before 

and after the cooling section; namely, pq = pq
out

pq
in

. 

This cooling force just tries to equalize the velocities of 

all particles. The linear friction can certainly cool regular 

hot beams, but at very low temperature, it works as a 

heating source. For example, unlike in a uniform focusing 

channel, the betatron oscillations of particles never vanish 

in an AG lattice as long as the beam has finite transverse 

extent. 

Tapered Cooling 

As mentioned above, too strong a transverse linear 

friction eventually starts to heat up the beam due to the 

oscillatory nature of the stationary state. The same 

argument also applies to the longitudinal motion because 

of the existence of dipole fields in a storage ring. Once a 

crystalline ground state is reached, particles with different 

horizontal positions follow slightly different closed orbit 

every turn. On the other hand, their revolution frequencies 

must be identical to maintain the ordered structure. This 

means that the average longitudinal speeds of those 

particles are different depending on the horizontal 

coordinates. Therefore, the linear friction as in Eq. (6) 

again operates as a heating source in the longitudinal 

direction. To compensate the dispersive heating at ultra-

low temperature, the tapered cooling force is necessary 

[12,22]: 

    pz = f z( pz

in Cxz xin),                        (7) 

where C
xz

 is the tapering factor that depends on the 

lattice design [36]. The tapered force yields not only 

longitudinal but also horizontal cooling effects when it is 

applied to the beam at a position with finite momentum 

dispersion [22]. 

Laser Cooling 

The longitudinal dissipative force 
    
F+ ( )  generated by a 

laser light co-propagating (counter-propagating) with an 

ion beam can be expressed as [14,15] 

F± = ±
1

2
k
L

S
L

1+ S
L
+ (2 ± / )

2
,

              

(8) 
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where  is the natural linewidth of the cooling transition, 

k
L
 is the wave number of the laser, S

L
 is the saturation 

parameter, and 
  + ( )  is the detuning of the co-propagating 

(counter-propagating) laser frequency from the natural 

resonant frequency 
  0

 of the ion. When the co-

propagating (counter-propagating) laser frequency in the 

laboratory frame is 
  + ( ) , we have the Doppler-shifted 

detuning 
      ± ± [1 (1+ pz / )] 0 . Assuming a 

Gaussian laser, the saturation parameter is given by 

    SL = S0 exp[ 2(x
2
+ y

2) / w
2 ] , where 

    
S

0
 corresponds to 

the peak saturation parameter on the axis of laser 

propagation, and w is the laser spot size that depends on 

the Rayleigh length 
  
z

R
. When the center of a laser 

cooling section is located at the longitudinal coordinate 

    
s

0
, we can write 

    
w(s) = w0 1+ 2(s s0)2 / z

R

2
 with 

    
w

0
 

being the waist size of the laser. 

The Doppler limit 
  
T

D
 of laser cooling is determined by 

the balance between the dissipative force in Eq. (8) and 

diffusive heating originating from the random nature of 

photon emission and absorption. In the simple 1D case, 

T
D

 can be evaluated from the formula k
B
T
D
/ 2 = / 4 , 

where 
  
k

B
 is the Boltzmann constant. In the CRYSTAL 

code, a proper amount of random kick is applied to the 

beam in every integration step to include the diffusive 

heating effect. To check the reliability of our laser-

cooling algorithm, we performed test simulations 

changing some fundamental parameters. An example is 

shown in Fig. 4 where the final equilibrium temperature 

reached in our laser-cooling simulation is plotted as a 

function of integration time step. The horizontal straight 

line corresponds to the theoretical Doppler limit that 

agrees fairly well with the CRYSTAL simulation results 

unless the integration step is too large.  

RESONANT COUPLING SCHEME 

Principle 

In order for the Doppler cooling mechanism to be 

effective, each ion must absorb many photons while it 

passes through a cooling section. This requirement can 

readily be met in the longitudinal direction by introducing 

the laser light along the beam orbit in a straight section. 

As to the transverse directions, it is practically impossible 

to achieve efficient, direct laser cooling because we 

cannot ensure a large overlap between the beam and laser. 

Unlike an ion plasma in a compact trap, a typical ion 

beam in a storage ring is much hotter and thinner, which 

makes it extremely difficult to accomplish 3D laser 

cooling. 

A possible solution to extend the powerful longitudinal 

laser-cooling force to the transverse dimensions is the use 

of dynamic coupling that correlates one dimension to the 

others [18]. Mathematically, what we must do is to create 

additional linear potentials proportional to   x z  and y z  

(or x y ). We then move the operating point of the 

storage ring to excite linear coupling resonances: 

    x y integer, x z integer,             (9) 

where 
  z

 is the synchrotron tune. As theoretically 

demonstrated in previous papers [18,19], the transverse 

indirect cooling rate is considerably enhanced under these 

conditions. The effectiveness of RCM has been partially 

confirmed in a storage-ring experiment [37] where the 

method was actually employed to improve the vertical 

cooling efficiency. In this experiment, a solenoid magnet 

was turned on to produce the linear x y  coupling. 

Coupling Sources 

There are several practical ways to provide the linear 

coupling potential required for indirect transverse cooling. 

The excitation of horizontal-vertical coupling is 

particularly easy; we simply put either a skew quadrupole 

magnet or a solenoid. It is also straightforward to couple 

the longitudinal motion of a stored particle with the 

horizontal motion; all we have to do is to place a regular 

rf cavity at a dispersive position [19]. An alternative 

solution for longitudinal-transverse coupling is the use of 

coupling rf cavities operating in a deflective mode [18]. 

The coupling-cavity scheme is more flexible in 

controlling the transverse cooling efficiency because it 

does not rely on the dispersion function of the lattice. 

Another interesting option for indirect transverse 

cooling is the Wien filter [38]. The single-particle motion 

within this static electromagnetic device approximately 

obeys the Hamiltonian 

    
HW =

px

2
+ py

2
+ pz

2

2
+

1

2
x

2
x

2

x xpz ,         (10) 

where 
x
 is a constant parameter proportional to the filter 

voltage. As pointed out in Ref. [38], a sort of tapered 

force defined by Eq. (7) is naturally developed when we 

apply a cooling laser to stored ions within the filter. The 

momentum dispersion must, therefore, be finite in the 

straight section where this device is located. It is worthy 

to recall that tapered cooling requires no synchro-betatron 

resonance to enhance the horizontal cooling rate [22]. We 

 
Figure 4: Results of Monte-Carlo simulations to test 
the laser-cooling model. Low-energy 24Mg+  ions 
have been assumed in this example. 
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can thus strongly cool even coasting beams. Efficient 

vertical cooling can very easily be carried out with RCM 

by equalizing two betatron tunes 
    
( x , y)  and then 

switching on either a solenoid or a skew quadrupole. 

MD RESULTS 

It has been demonstrated in many previous papers that 

beam crystallization is theoretically feasible under several 

conditions satisfied. The necessary conditions include not 

only Eqs. (1) and (2) but also efficient transverse cooling 

plus tapering. In practice, however, it is difficult to meet 

all these requirements simultaneously. For example, the 

condition (1) cannot strictly be fulfilled unless we execute 

beam cooling in all lattice periods. If we bunch the beam 

with a single rf cavity, that also weakly breaks the lattice 

symmetry, reducing Nsp  to unity. The bare betatron tune 

    x ( y)  then has to be less than 0.25 per turn, which is 

clearly unacceptable in a regular storage ring. 

We have performed a number of systematic MD 

simulations to see how close we can come to a crystalline 

state with existing technologies. First of all, laser cooling 

has to be chosen for our final goal because of its ultra-low 

limiting temperature. Although several other cooling 

methods are available, none of them can reach the 

temperature range close to the absolute zero. Then, we 

need to enhance the transverse cooling rate in some way. 

The best option for this purpose should be the application 

of RCM, considering its simplicity; in fact, all we need is 

to adjust the betatron tunes to proper resonant values if 

linear coupling sources are present in the ring. Figure 5 

shows a MD result in which we have assumed low-energy 

  
24

Mg
+  ions circulating in the cooler storage ring “S-

LSR” at Kyoto University [21]. Clearly, a coasting string 

crystal has been formed. In this example, a horizontal 

Wien filter is used to activate linear synchro-betatron 

coupling, while a weak solenoid field is switched on for 

x y  coupling. S-LSR actually has a solenoid magnet 

(originally for electron cooling) in one of six straight 

sections. The bare tunes have been set at ( x , y) =

(1.46, 1.46)  to improve the vertical cooling rate with 

RCM. The ordered configuration in Fig. 5, whose 

normalized root-mean-squared (rms) emittance is below 

  10
12

m rad , lasts many turns even without the cooling 

force. It is also possible to form a zigzag crystalline beam 

while its stability is not guaranteed. Note that, by 

switching on an rf cavity, we can establish string and 

zigzag-like configurations of finite lengths (bunched 

crystals). In that case, the Wien filter is no longer 

necessary because, as explained in the last section, a 

regular rf cavity sitting in a dispersive position naturally 

induces synchro-betatron coupling. 

In contrast to 1D and 2D crystals, none of numerical 

attempts to produce a stable shell crystal with realistic 

methods have been successful. There are two primary 

obstacles that prevent the formation of stable 3D 

crystalline structures: 

• Transverse collective instability (linear coherent 

resonance) due to the lattice symmetry breakdown 

originating from local cooling forces and coupling 

sources. 

• Lack of an optimal tapered force. 

We immediately recognize that it is not easy to evade the 

first obstacle in practice. The second one is also quite 

troublesome. Although a Wien filter provides a tapered 

force, it is difficult to adjust the tapering coefficient to the 

optimum value [38]. Even if the optimum tapering is 

realized somehow, the filters have to be placed in all 

superperiods to keep the high lattice symmetry, which is 

not realistic in general. 

DISPERSION-FREE LATTICE 

One of the two obstacles mentioned above (i.e. lack of 

an optimal tapered force) can be overcome by introducing 

special bending elements [20]. Since the necessity of the 

tapered force comes from the existence of momentum 

dispersion in a usual storage ring, what we should try is to 

minimize dispersive effects. It is actually possible to 

eliminate linear dispersion all around the storage ring by 

combining an electro-static dipole field with a magnetic 

dipole [20].  

The dispersion-free bending element enables us to 

construct multi-shell crystalline structures, as depicted in 

Fig. 6, without the use of the tapered force. The bunched 

Figure 5: Spatial configuration of an ultra-cold ion 
beam predicted by a MD simulation in which the 
realistic laser-cooling model and the lattice of S-LSR 
have been considered.  
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symmetric test storage ring operating in a dispersion-
free mode. The linear friction model in Eq. (6) has 
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3D crystalline state was actually reached with the linear 

friction model in Eq. (6). The ordered beam in Fig. 6 is, 

however, unstable without the cooling force; the 

crystalline structure is destroyed as soon as we stop 

cooling the beam. This is because in the present 

simulation, we put only one rf cavity in the test ring to 

bunch the beam. If rf cavities are placed and excited in all 

lattice periods, then the stability of the crystalline beam is 

remarkably improved. In any case, it is impossible to 

form such an ordered 3D configuration as shown in Fig. 6 

unless the ring is operated in the dispersion-free mode. 

CONCLUSIONS 

We have surveyed relatively recent MD results on 

Coulomb crystallization of ion beams circulating in a 

storage ring. Emphasis is placed upon the importance of 

including the actual lattice structure of the ring into MD 

simulations. In fact, the periodic nature of AG focusing 

and momentum dispersion peculiar to a circular machine 

make the dynamic behavior of crystalline beams much 

more complex than that of Coulomb crystals in a 

harmonic potential. To form various crystalline beams, we 

need a storage ring that has a high superperiodicity and is 

equipped with a laser cooler. It is particularly important to 

preserve the lattice symmetry as strictly as possible, so 

that the destructive effect from transverse coherent 

instability is minimized. In a regular ring, it is also 

strongly required to develop an optimal tapered force in 

order to avoid dispersive heating at ultra-low temperature. 

MD simulations indicate that 1D and 2D crystalline 

beams can be generated with advanced beam cooling 

techniques, e.g. 3D laser cooling based on RCM. The use 

of the dispersion-free bending element may enable us to 

form even 3D crystalline structures (while it depends on 

how well we can maintain the lattice symmetry). In any 

case, a careful combination of state-of-the-art accelerator 

technologies will make it possible to produce an ultra-

cold beam that has a normalized rms emittance of the 

order of 10 10
m rad  or even lower. 
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