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Abstract

Precise and fast 3D space charge calculations for
bunches of charged particles are still of growing impor-
tance in recent accelerator designs. A widespread approach
is the particle-mesh method computing the potential of a
bunch in the rest frame by means of Poisson’s equation.
Whereas an adaptive discretization of a bunch is often re-
quired for efficient space charge calculations in practice,
such a technique is not implemented in many computer
codes.

In this paper we present a new approach to an adaptive
discretization which is based on the multigrid technique.
The goal is that the error estimator needed for the adaptive
distribution of mesh lines can be calculated directly from
the multigrid procedure. The algorithm was implemented
in the software package MOEVE and investigated for sev-
eral particle distributions. It turns out that the adaptive dis-
cretization technique performs very efficiently.

INTRODUCTION

The simulation of the dynamics of high-brightness
charged particle bunches demand the fast calculation of
3D non-linear space charge fields with an accuracy that
matches the quality of the bunch. The particle-mesh
method is a widespread model for space charge calcula-
tions. Here, adaptive discretization techniques are often
required in order to satisfy both computational demands:
accuracy and fast performance. Nevertheless, adaptive dis-
cretizations are implemented only in a few software pack-
ages together with space charge calculations. For instance,
the FFT Poisson solver that is often applied allows only
an equidistant mesh. An adaptive discretization following
the particle density distribution is implemented in the GPT
tracking code (General Particle Tracer, Pulsar Physics) to-
gether with a multigrid Poisson solver of the software pack-
age MOEVE (Multigrid for non-equidistant grids to solve
Poisson’s equation) [5, 11]. The disadvantage of this ap-
proach is that it does not provide a hierarchical construction
of meshes which could be used directly by the multigrid al-
gorithm.

In this paper we present a new approach to an adaptive
discretization which is based on the multigrid technique.
The goal is that the error estimator needed for the adap-
tive distribution of mesh lines can be calculated directly
from the multigrid procedure. The algorithm has been im-
plemented within the framework of the software package
MOEVE. It will be investigated for several particle distri-
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butions among them a particle distribution which occured
during simulations for the European XFEL [1].

3D SPACE CHARGE MODEL

The space charge model we consider here is the particle-
mesh method. The distribution of particles in a bunch is
modeled as distribution of macro particles. Assuming that
the energy of the macro particles is within the same range
the space charge field is calculated in the rest frame of the
bunch. After the transformation into the rest frame a mesh
is constructed around the particles of the bunch and the
charge of the particles is assigned to the mesh points. Now,
the potential ϕ can be obtained from Poisson’s equation
given by

−Δϕ =
�

ε0
in Ω ⊂ R

3,

ϕ = 0 on ∂Ω1,
∂ϕ

∂n
+

1
r
ϕ = 0 on ∂Ω2,

(1)

where � the space charge distribution, ε0 the dielectric con-
stant and r the distance between the centre of the bunch
and the boundary. Usually, the domain Ω is a rectan-
gular box constructed around the bunch. On the surface
∂Ω = ∂Ω1 ∪ ∂Ω2 (∂Ω1 ∩ ∂Ω2 = ∅) perfectly conducting
boundaries (∂Ω1) or open boundaries (∂Ω2) can be applied.
For space charge calculations within a beam pipe the do-
main Ω is assumed to be a cylinder with elliptical cross sec-
tion. A detailed description of the 3D space charge model
can be found in [8] and the model with elliptical shaped
beam pipe in [4], respectively.

For the solution of the Poisson equation we applied the
discretization with second order finite differences. This
leads to a linear system of equations of the form

Lhuh = fh, (2)

where uh denotes the vector of the unknown values of the
potential and fh the vector of the given space charge den-
sity at the grid points. The step size h indicates a certain
refinement level and the operator Lh is the discretization of
the Laplacian.

THE POISSON SOLVERS OF MOEVE

The software package MOEVE has been developed for
space charge calculations. It involves several iterative Pois-
son solvers among them the state-of-the-art multigrid Pois-
son solvers MG (multigrid) and MG-PCG (multigrid pre-
conditioned conjugate gradients). These algorithms pro-
vide optimal convergence, i. e. the number of iteration steps
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needed to obtain a certain accuracy is independent of the
step size h.

The multigrid algorithm operates on a certain number of
grids starting with the mesh given by the discretization of
Poisson’s equation which is related to equation (2). This
mesh is referred to as the fine grid. Then a sequence of
coarser grids is generated by cutting mesh lines. On an
equidistant mesh where the number of mesh lines equals
N = 2t + 1, every second mesh line can be removed.
Of course this process can be also performed vice versa,
i. e. we start with a coarse mesh and refine the mesh (adap-
tively) until a certain fine level is achieved. More details
of the Poisson solvers of MOEVE can be found elsewhere,
for instance in [5, 6].

Since the bunch is located only in a certain part of Ω, an
adaptive discretization strategy is required for an efficient
solution method. Successfully applied for space charge
calculations, one possible method is the adaptive distribu-
tion of mesh lines according to the distribution of the par-
ticles inside the bunch as implemented in the tracking code
GPT [10]. However, the main drawback of this approach
is that the mesh has no natural relation to a multigrid hier-
archy. Together with the multigrid Poisson solver of MO-
EVE, a special coarsening strategy has been developed for
these adaptive meshes in order to achieve optimal multigrid
convergence [9].

SELF-ADAPTIVE MULTIGRID

The generation of adaptive meshes providing both an ap-
propriate approximation of the bunch and a hierarchy of
meshes for the multigrid Poisson solver is an important
task for the development of efficient 3D space charge al-
gorithms. The grid refinement should be self-adaptive, i. e.
the grid refinement is carried out dynamically during the
solution process. It is controlled by some refinement crite-
rion.

A common criterion which will be tested in this paper
is the τ -criterion [12]. Before this criterion can be defined
some notations are necessary. The step sizes h and 2h refer
to the step sizes on the fine and the next coarser grid (usu-
ally with double mesh size), respectively. The operators
I2h
h and ̂I2h

h denote different restriction operators. For the
numerical tests of the next section the injection was cho-
sen for ̂I2h

h and the full weighting restriction for I2h
h . The

τ -criterion is based on the so-called (h,2h) relative trunca-
tion error τ2h

h with respect to the restriction operators I2h
h

and ̂I2h
h . It is defined by

τ2h
h := L2h

̂I2h
h uh − I2h

h Lhuh . (3)

The values of τ for the “XFEL bunch” (see section on nu-
merical investigations below) are represented in Figure 1.

By means of the refinement criterion a hierarchy of lo-
cally refined grids can be generated. The self-adaptive
multigrid scheme is given as follows:

Algorithm: Self-Adaptive Multigrid

1. Start on a relatively coarse mesh.

2. Perform a few multigrid cycles on equation (2).

3. Calculate τ2h
h .

4. Add mesh lines locally, where |τ2h
h | > ε.

5. Proceed from 2) as long as |τ2h
h | > ε.

The algorithm is constructed such that the mesh is refined
at locations where |τ2h

h | > ε. Hence, the structure of the
resulting mesh corresponds to the tensor product mesh im-
plemented in MOEVE. This strategy allows the direct ap-
plication of the MOEVE MG Poisson solvers on the refined
mesh. This algorithm was first given in [6].
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Figure 1: Values of τ for the XFEL bunch. The values are
shown in the (x,z)-plane at x=0.0 m.

NUMERICAL INVESTIGATIONS

In this section the performance of the adaptive dis-
cretization strategy is investigated. We applied both MG
(multigrid) and MG-PCG (multigrid preconditioned coju-
gate gradients) as multigrid Poisson solvers implemeted in
MOEVE. Although MG-PCG takes more time for one sin-
gle step because of additional caculations it is often more
stable in real life applications. The results for the adap-
tively refined grid were compared to those obtained with
an equivalent equidistant grid. All Poisson solvers were
applied until the relative residual had achieved a value of
less than 10−2. This value seems to be rather low, but fur-
ther iterations would not improve the numerical error, be-
cause the space charge densities of the following particle
distributions are discontinues.

Cylindrical Particle Distribution

First, the refinement algorithm was applied to a cylindri-
cal particle distribution with 100,000 macro-particles and
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Nx × Ny × Nz MG steps CPU time
17 × 17 × 33 2 0.05 s
33 × 33 × 65 3 0.16 s
65 × 65 × 129 4 1.36 s

129 × 129 × 257 4 10.80 s
257 × 257 × 513 4 88.90 s
Nx × Ny × Nz MG-PCG steps CPU time
17 × 17 × 33 2 0.05 s
33 × 33 × 65 4 0.20 s
65 × 65 × 129 4 1.38 s

129 × 129 × 257 4 11.10 s
257 × 257 × 513 4 92.2 s

Table 1: Performance of MG and MG-PCG for a cylindri-
cal particle distribution on equidistant grids.

a radius of R = 2 mm and a length of 17.3 mm. Such a
cigar-like bunch shape was chosen because these long dis-
tributions usually pose a problem to the Poisson solvers [7].
The macro particles of the bunch were uniformly dis-
tributed. Th bunch had a total charge of Q =−1 nC.
The computational domain Ω was constructed as Ω =
[−0.0085, 0.0085]× [−0.0085, 0.0085]× [−0.017, 0.017]
and open boundary conditions were applied. For the adap-
tive algorithm we started with an equidistant mesh i. e. the
step size at the coarsest level is approximately equal for all
coordinate directions. This is not necessary in general but
for long bunches it improves the performance.

In the following the performance of the straigth-forward
multigrid technique on equidistant grids was compared to
the performance on the adaptive grid. The CPU times in-
clude all calculations for space charge i. e. also the assign-
ment of the particle’s charge to the grid points.

In Table 1 the CPU time is given for calculations with
the MG and MG-PCG solver on equidistant grids. The re-
sults approve the linear behaviour of the MG and MG-PCG
algorithms.

Table 2 represents the results for the self-adaptive multi-
grid procedure. The algorithm starts with a grid of 17 ×
17 × 33 mesh points. Then the mesh will be refined suc-
cessively until all values of τ are less than 10−2. The re-
finement of each level is given in Table 2. The smallest
step size of each level coincides with the step size of the
corresponding level of the equidistant discretization. Since
the adaptive discretization requires only a fraction of the
mesh points of the equidistant grid the performance time
for MG-PCG reduces to a quarter of the time required for
the same refinement level on an equidistant grid.

XFEL bunch

The particle distribution in this section was taken from
simulations for the European XFEL [1]. The bunch had a
total charge of −1 nC. At the cathode it was started with
a radius of 3 mm and the laser was modeled as a flat top
shape with 20 ps full width half maximum and a rise and
fall time of 2 ps. The bunch was tracked through the rf gun

Nx × Ny × Nz MG steps CPU time
17 × 17 × 33 2 0.04 s
33 × 33 × 59 3 0.20 s
47 × 47 × 97 4 0.87 s
65 × 65 × 163 7 4.36 s
95 × 95 × 283 18 41.10 s
Nx × Ny × Nz MG-PCG steps CPU time
17 × 17 × 33 2 0.04 s
33 × 33 × 59 4 0.23 s
47 × 47 × 97 4 0.93 s
65 × 65 × 163 6 4.01 s
85 × 85 × 283 8 21.80 s

Table 2: Performance of MG and MG-PCG for a cylindri-
cal particle distribution on the adaptively constructed mesh.

Nx × Ny × Nz MG steps CPU time
33 × 33 × 65 3 0.15 s
65 × 65 × 129 3 1.4 s

129 × 129 × 257 3 3.19 s
257 × 257 × 513 2 51.20 s
Nx × Ny × Nz MG-PCG steps CPU time
33 × 33 × 65 4 0.12 s
65 × 65 × 129 4 1.34 s

129 × 129 × 257 4 10.70 s
257 × 257 × 513 2 53.00 s

Table 3: Performance of MG and MG-PCG for the simu-
lated XFEL bunch at 0.07 m on an equidistant mesh.

with the tracking code ASTRA [3] with the settings given
in the technical desing report [2].

For this numerical test the particle distribution at the lon-
gitudinal position of 0.07 m after the cathode was cho-
sen. Here, the bunch had a radius of 3.0 mm, a length
of 8.0 mm and an energy of 2.5 MeV. For the simula-
tion the bunch contained 100,000 macro particles. The
bounding box in the rest frame was constucted as Ω =
[−0.016, 0.016] × [−0.016, 0.016] × [0.037, 0.047] and
Dirichlet boundary conditions were applied.

Table 3 and 4 present the CPU time for the equidis-
tant and for the adaptively constructed grids, respectively.
It turns out that the computational effort can be reduced
enormously by the application of the adaptive discretiza-
tion strategy. Considering the finest dicretization the CPU
time of the MG method was reduced nearly to a tenth on
the adaptive mesh.

Figure 2 and 3 show the adaptive discretization with 45×
45 × 85 grid points.

CONCLUSIONS

In this paper we constructed an adaptive discretization
technique for space charge calculations which is based on
the τ -criterion. By means of this approach a hierarchy of
grids can be generated which can be directly used by the
multigrid scheme of the software package MOEVE. The
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Nx × Ny × Nz MG steps CPU time
31 × 31 × 53 2 0.06 s
45 × 45 × 85 3 0.52 s
59 × 59 × 141 2 2.00 s
83 × 83 × 243 3 5.96 s
Nx × Ny × Nz MG-PCG steps CPU time
31 × 31 × 53 2 0.14 s
45 × 45 × 85 4 0.65 s
59 × 59 × 141 6 2.16 s
83 × 83 × 243 6 7.96 s

Table 4: Performance of MG and MG-PCG the XFEL
bunch at 0.07 m on the adaptively constructed mesh.
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Figure 2: Adaptive discretization (transversal) for the
XFEL bunch. The potential in the rest frame is plotted in
the transversal plane through the longitudinal centre of the
bunch.

implementation into the framework of MOEVE allowed a
relatively simple approach. The numerical tests showed
that the adaptive discretization reduced the number of mesh
points enormously. Hence, the space charge calculations
were performed very efficiently.
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the (x,z) plane at y=0.0 m.
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