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Abstract

In the proposed electric dipole moment (EDM) experi-
ment, with an estimated spin coherence time of 1000 s, the
spin precession due to an EDM of 10−29 e.cm will pro-
duce a change in the vertical spin component of approxi-
mately 10 μrad during the storage time. Such high sensi-
tivity needs an highly accurate and reliable simulation envi-
ronment of the beam and spin behavior during the storage
time. Therefore, several spin-related accelerator simula-
tion programs have been considered. The paper surveys
the computational algorithms of these approaches and dis-
cusses their comprehensive analysis frommultiple perspec-
tives.

INTRODUCTION

Introduced by Uhlenbeck and Goudsmit to explain the
result of Stern-Gerlach experiments, spin has become a
fundamental concept and plays an important role in the
interactions of elementary particles. To study the various
related phenomena, different experiment environments are
required. For example, to study spin dependence in the
interactions at the quark and gluon level, one employs col-
lision of intense beams of polarized protons at high energy.
The Relativistic Heavy Ion Collider (RHIC) at Brookhaven
National Lab provides a unique facility for this study. Here,
polarized protons can be collided with 50 to 500 GeV cen-
ter of mass energy. The design calls for an intensity of
2 × 1011 protons per bunch with a polarization of 70%.
When the polarized beam is produced from the source, ac-
celerated by several pre-acceleration facilities, injected and
ramped in RHIC to the required energy, numerous spin res-
onances due to the interaction of the magnetic moment and
external electromagnetic fields can deteriorate the polariza-
tion. Hence, the spin dynamics have to be understood and
solutions have to be proposed to preserve the polarization
during the acceleration and storage.
Recently, another quest for physics beyond the Stan-

dard Model (SM) represents a major effort in basic physics
research. A non-vanishing EDM is a violation of Time-
Reversal (T) and Parity (P) symmetries, and under the as-
sumption of CPT invariance also violates the CP symme-
try. Because the Electric Dipole Moment (EDM) values
predicted by most extensions to the SM are many orders of
magnitude larger than those of the SM itself and close to
present experimental sensitivity levels, EDM experiments
have become very sensitive probes for new physics, such

as new sources of CP violation.
A completely new approach to EDM studies is based on

a charged polarized particle storage ring [1, 2]. A non-zero
EDM will affect the observed spin precession, resulting in
the eventual change of the polarization. This technique
promises a significant sensitivity improvement, reaching
down to 10−29 e.cm in 107 s of physics running time. In
such a long time running, the polarization of the beam has
to be maintained, which requires the spin dynamics sys-
tematic errors need to be tightly controlled.
The most general description of spin motion under the

influence of external electromagnetic fields is

d�S

dt
= μ�S × �Fμ( �B, �β × �E) + d�S × �Fd( �E, �β × �B). (1)

Here, the spin vector �S is in the particle rest frame, �B and
�E stand for the laboratory magnetic field and electric field,
respectively. The first term, representing the spin preces-
sion due to the magnetic dipole moment μ = g e

2mc , has
been explored in previous accelerator experiments, for ex-
ample at RHIC. The second term is the spin precession due
to the electric dipole moment d = η e

2mc , which is proposed
for study in the EDM experiment.
The design, optimization, and commissioning of mod-

ern accelerator complexes rely on dedicated beam stud-
ies based on advanced numerical approaches. Analysis of
the spin motion required further development of conven-
tional accelerator codes by augmenting positional coordi-
nates with spin coordinates and combining the Lorentz and
Thomas-BMT equations. However, such composite spin-
orbital applications do not affect the basic computational
framework, especially given that particle orbits are essen-
tially independent of spin orientation (Stern-Gerlach forces
are negligible at the high particle energies considered). The
same numerical approaches are applicable and can be di-
vided into two major categories: tracking and mapping.
The list of successful implementations of these approaches
is very long and this paper does not presume to cover all of
them. Its primary goal is rather practical: to build an open
simulation environment addressing the challenging EDM
experiment. The correction of spin (g-2) frequency was se-
lected as an initial benchmark application.

EQUATIONS OF MOTION

Present beam simulation programs have usually consid-
ered only the first term of Eq.(1) dealing with the spin pro-
cession due to the magnetic dipole moment. This term with
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the magnetic field �B and electric fields �E defined in the
laboratory frame is described by the Thomas-BMT equa-
tion [3]

d�S

dt
= �S × �F , (2)

where

�F = ev0
p0c

[
(aγ + 1) �B − aγ2

γ+1 (�β · �B)�β

− (aγ + γ
γ+1)�β × �E

]
.

(3)

Here a = (g− 2)/2 (also called G in much of the accelera-
tor literature) is the anomalous magnetic moment, �β = �v/c
and γ is the Lorentz factor.
In a circular accelerator, the particle motion is conve-

niently described relative to the trajectory of a reference
particle with momentum p0 since all machine magnets are
positioned relative to this trajectory. In this coordinate
system, called Frénet-Serret plane coordinate system, the
Thomas-BMT equation can be rewritten as

dSx

ds
=

[
�S × �F

]
x

dt

ds
+ hSz

dSy

ds
=

[
�S × �F

]
y

dt

ds
(4)

dSz

ds
=

[
�S × �F

]
z

dt

ds
− hSx

where
dt

ds
=

1 + hx
pz

p0

1
v0

. (5)

Similarly, the Lorentz equations describing the particle
behavior in an external electromagnetic field in the Frénet-
Serret coordinate system are expressed in the following
form:

d

ds

(
px

p0

)
=

e

p0c

[
�E

β0
+

�p

p0
× �B

]
x

·
(

dt

ds
· v0

)
+ h

pz

p0

d

ds

(
py

p0

)
=

e

p0c

[
�E

β0
+

�p

p0
× �B

]
y

·
(

dt

ds
· v0

)
(6)

d

ds

(
E

p0c

)
=

(
e �E

p0c

)
· �p

p0
·
(

dt

ds
· v0

)

where the third component of momentum is directly calcu-
lated as

pz

p0
=

√
E2 − (m0c2)2

p2
0c

2
−

(
px

p0

)2

−
(

py

p0

)2

. (7)

The above equations are given in the canonical coordinates
used in the MAD [4] and MAD-X program [5]. This set
of coordinates is not unique and is chosen differently in
different accelerator codes.

TRACKING APPROACH

Introduced in the early days of the SSC, the code
TEAPOT [6] had the narrowly defined purpose of inves-
tigating proton emittance growth (and lifetime reduction)
due to magnetic imperfections. Symplecticity was there-
fore of paramount importance. Because of the difficulty of
preserving symplecticity with thick elements, the code ac-
cepts only zero length elements, making it a “kick” code,
or a “finite element” code, or a “symplectic integrator”.
TEAPOT, like all tracking codes, is thus a numerical dif-

ferential equation solver (of the Lorentz force equation).
Finite-length elements are sliced as narrowly as is required
for the desired accuracy. Unlike some symplectic integra-
tors, however, negative drift lengths are disallowed. This
is consistent with the philosophy that zero length elements
are “better than” finite length elements, and that the sliced
accelerator, though idealized, is otherwise physical.
Conceptually the accelerator consists of a sequence of

zero length elements alternating with finite element drifts.
All orbits are therefore straight lines with kinks. All
straight lines and kinks are calculated exactly and symplec-
tically. One therefore calculates “exactly in an approximate
accelerator”, rather than “approximately in an exact accel-
erator”.
All longitudinal evolution proceeds by straight line seg-

ments. A single slice of a magnet is represented by a “mul-
tipole plane” which includes both intended and unintended
(error) fields. After solving for the intersection of an in-
dividual particle trajectory with this plane, the orbit kink
is calculated and the new straight line determined. Parti-
cle tracking consists of iterating this process for all lattice
elements and for each particle.
Unlike most beam dynamics codes, neither linear nor

nonlinear transfer matrices are used for particle propaga-
tion. But transfer maps and lattice functions are calculated
numerically and made available as optional output. This
capability has been completely superceded by arbitrary or-
der truncated Taylor series determination in the TEAPOT
module of UAL [7]. Numerous other simulation features
such as bunch generation, orbit smoothing, tune and chro-
maticity adjustment, and decoupling are also supported,
along with even more specialized features.
By augmenting the six phase space coordinates with

three spin coordinates, and solving also the BMT equation
using the same finite element approach, it was relatively
straightforward for S. Mane, in 1994, to extend the code to
include spin tracking.
Another approach has been implemented in the spin

tracking code SPINK [8]. This program was written for
the RHIC project at Brookhaven National Laboratory and
employed for years to study the behavior of polarized pro-
tons in all stages of the accelerator complex. SPINK uses a
composite approach. Its orbit module is based on the first
order matrices and the second order Transport maps pro-
duced by the MAD program. Spin propagation was imple-
mented by the additional thin elements, spin kicks, which
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rotate the spin in each accelerator element using the spin
rotation matrixM:

S = M S0 (8)

This procedure has the advantage of very high computa-
tional speed using matrices that by construction represent
a rotation of the spin vector by an angle δμ around an axis
defined by its latitude θ and longitude φ, with respect to the
reference coordinate axes.
Eqs.(4) yield three third order formally identical linear

equations for the three components of the spin

S′′′ + ω2S′ = 0, (9)

with

ω2 = f2
x +

(
fy − 1

ρ

)2

+ f2
z , �f = �F · dt

ds
. (10)

The general integral is

S = C1 + C2 cos(δμ) + C3 sin(δμ). (11)

with
δμ = ω δs (12)

the spin rotation angle (spin kick) in the machine element.
δs is the path length through the element along the refer-
ence orbit. The constants of integration, C1, C2, C3, can
be found as a linear function of the initial and the final val-
ues of the spin components using S, S′, S′′ and the origi-
nal system. The algebra is tedious but straightforward and
the resulting linear relation between spin after and before
kick, expressed in the form of the 3 × 3 matrixM, is⎛
⎜⎜⎜⎜⎝

1 − (B2 + C2)c ABc + Cs ACc − Bs

ABc − Cs 1 − (A2 + C2)c BCc + As

ACc + Bs BCc − As 1 − (A2 + B2)c

⎞
⎟⎟⎟⎟⎠

with
c = 1 − cos(δμ) s = sin(δμ) (13)

and

A =
fx

ω
, B =

fy − 1
ρ

ω
, C =

fz

ω
(14)

M is a parametric linear transformation, whose elements
are function of the values of the particle coordinates in the
laboratory, and has a determinant

det(M) = 1. (15)

The matrix represents a rotation of the spin vector by an
angle δμ around an axis defined by the two angles θ and lφ.
The coefficient of Eq.(14) can be expressed as a function of
these angles, namely

A = cos θ sin φ, B = sin θ, C = cos θ cosφ (16)

MAPPING APPROACH

The transformation of spin-orbit variables after passage
through given beam line, which could be a single pass
transport channel or one turn in circular accelerator, can
be represented in the form of the map

{
�zf = �F (�zi)
�Sf = A(�zi) · �Si

(17)

where �z denotes the combined vector of six orbital vari-
ables and 3×3matrixA(�z) belonging to the SO(3) group.
Assuming that �F (�0) = �0 (i.e. orbital variables are devia-
tions from reference orbit) and elements of the vector func-
tion �F and matrix A are differentiable functions, one can
make an approximation of the map in Eq.(17) expanding
its right hand side in Taylor series with respect to �z and
truncating this expansion at the certain order.
There is a variety of ways to calculate the numerical val-

ues of the coefficients of this truncated map. A.W.Chao
program SLIM, the first in this field, utilizes explicit for-
mulas and allows the treatment of the linear expansion of
the matrix A and assumes linear orbit motion [11]. The
code SPINLIE also uses explicit formulas obtained by for-
mula manipulators and extends the treatment of spin-orbit
motion up to third order [12]. It is clear that the complex-
ity of this semi analytical approach grows rapidly with the
truncation order making further development difficult.
Another possible way is to use some spin-orbit tracking

code with subsequent application of numerical differentia-
tion technique. This approach has its own difficulties and
will not be discussed here.
It seems that the most reliable way lies in the area of an-

alytical manipulations with polynomials. This allows ob-
taining spin-orbit map in a way which is independent from
the truncation order. The first program with such possibil-
ities for spin motion was FMN [10] written in 1992 un-
der the name VasiLIE. The computer code FMN was ap-
plied for several projects, for example, to the investigation
of schemes for preserving the polarization in the TRIUMF
KAON Booster, to the study of the possibilities to acceler-
ate polarized proton beams in the Nuclotron ring in Dubna,
in the HERA proton ring, and others. Later on similar pos-
sibilities were included into COSY INFINITY [13].
Both codes, FMN and COSY INFINITY, use such pow-

erful methods as numerical integration using the differen-
tial algebra techniques and the direct summing of Lie ex-
ponent series for s-independent elements. Note that Tay-
lor map coefficients obtained by these methods accumulate
two types of errors: computer rounding errors and errors
defined by the size of the integration step (or by the num-
ber of terms in the Lie series taken for summation). There
is an approach free from the defects of the second type in
which the number of the steps does not depend on a preci-
sion (like in the Gauss method of matrix inversion, where
the number of operations depends on the matrix dimension
only), which is also used in the FMN code [14].
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UAL FRAMEWORK

The Unified Accelerator Libraries (UAL) attempt to
”manage the complexity” of accelerators by providing an
environment for simulating a variety of properties of a va-
riety of accelerators using a variety of simulation codes and
methods. The intended value of the environment is to pro-
vide homogeneous access to these resources while masking
their diversity yet assuring their consistency. This allows
different methods to be consistently applied to the same
accelerator and the same methods to be applied to different
accelerators.
To facilitate such unification UAL has introduced an

open architecture in which diverse accelerator codes are
connected together via common accelerator objects such
as Element, Bunch, Twiss, etc. In this architecture each
accelerator code is implemented as an object-oriented li-
brary of C++ classes. There is a very natural identification
of physical elements, such as magnets, with their repre-
sentation by computer objects. UAL supports considerable
flexibility in the attributes of all objects - certainly enough
that all attributes of objects contained in modules included
so far have been describable without constraint. Such flex-
ibility has made it practical to evaluate, compare, and in-
tegrate a variety of design models and to build heteroge-
neous, project-specific applications.
The accumulated experience has motivated the develop-

ment of the Element-Algorithm-Probe framework [15], a
uniformmechanism for combining diverse modules to sim-
ulate complex combinations of the physical effects and dy-
namic processes. Elements are things like bending mag-
nets, RF cavities, collimators, and so on. Algorithms
are mathematical formulas capable of evolving quantities
known at element inputs to their corresponding values at
element outputs. So both element and algorithm are terms
of common usage, likely to be understood unambiguously
by all workers in the field. The term probe, because it is
less standard, requires more explanation. A similar term
is observable. As used in UAL a particle or beam bunch
probes the lattice elements. Other things also probe the
lattice. For example, the transfer map (identity at the ori-
gin) evolves into the transfer map from origin to element
output as it evolves through an element. So a probe is any-
thing whatsoever for which continuous evolution is mean-
ingful and the evolution is unambiguously caused by the
elements making up the lattice. It therefore makes sense
to evaluate the evolution of a probe caused by the lattice.
Examples of probes are 6D particle coordinates of all par-
ticles in a bunch, spin components, moments of a bunch
of particles, lattice functions such as Twiss functions and
dispersion functions, transfer matrices (i.e. linear maps),
nonlinear maps (which are represented by truncated power
series), wake fields, and so on.
Several years ago, The BNL team extended UAL with

the space charge module SIMBAD [16] as a part of the Eu-
ropean Union contract. At this time, addressing the spe-
cial requirements of the EDM experiment, UAL accom-

modated another BNL code, SPINK, described in the pre-
vious section on tracking approaches. This development
solved three major tasks. First, UAL allowed the upgrade
of the original SPINK version with the TEAPOT symplec-
tic tracking engine and provided access to other modules,
for example, the differential algebra-based integrator and
others. Second, the SPINK Fortran code has been refac-
tored and transformed into a few dedicated C++ classes.
As a result, it added flexibility for developing new exten-
sions, such as new types of elements and enhancing the ac-
curacy of the original approach with the slicing technique.
Finally, the SPINK algorithm became a part of the simula-
tion infrastructure which can be applied to other projects.

(G-2) EXPERIMENT

In the studies of spin motion, the (g-2) frequency is de-
fined as the frequency of the spin precession relative to
the momentum vector, describing the rate of change of the
component of spin �S parallel to the velocity. For a particle
with momentum p0 moving in a plane perpendicular to the
magnetic field �B, the (g-2) frequency is given by Thomas-
BMT equation as

ω0 =
eB
p0c

γv0 ·
g − 2

2
, (18)

where B is the magnitude of the field. If the orbit is not ex-
actly perpendicular to the magnetic field, a small correction
to the (g-2) frequency will appear. This pitch correction
has been addressed and examined in a few papers [17, 18]
when the pitch angle (the angle with respect to the plane
perpendicular to the magnetic field) is varying due to axial
focusing force, presented by an almost uniform and only
particle linear position dependent magnetic field.
As part of a calibration effort of particle tracking codes

for the storage ring of electric dipole moment (EDM) ex-
periments (proton and deuteron), a study of the pitch cor-
rection has been carried out by simulating a circulating par-
ticle in a continuous ring with weak magnetic focusing.
Given the field focusing index n = −[ ρ0

B0

∂By

∂x ], the pitch
correction is extended [19] because of the quadratic depen-
dence on y2 in the curvilinear coordinate system. In the
limit of fast pitch change (ωy � ω0, with ωy the frequency
of the vertical betatron oscillation ), the corrected (g-2) fre-
quency is given as

ωa = ω0

[
1 − a

2
ψ2

0 +
n

2(1 − n)
ψ2

0

]
. (19)

Here, ω0 is the uncorrected (g-2) frequency given in
Eq.(18), a = (g−2)/2 and ψ0 is the amplitude of the pitch
angle with respect to the xz-plane perpendicular to the y di-
rection. This analytical formula has been confirmed quan-
titatively by the integration of the differential equations of
motion using the subroutine TDHPCG [20] based on the
fourth order corrector-predictor method of Runge-Kutta.
We applied this result to a simple muon ring defined by

the parameters in table 1. For n equals 0.13, ωy/ω0 ≈ 225
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Table 1: Testing muon particle and ring parameters.
Muon momentum p (GeV/c) 0.1
Focusing Index n 0.13
Radius ρ (m) 5
Anomalous magnetic moment a 0.00116592
Initial pitch angle ψ0 (mrad) 1
Initial spin vector Sx, Sy, Sz 0, 0, 1

close to the limit of fast pitch change. The results from
the analytical formula Eq.(19) and the UAL simulation are
listed in table 2. The number of slices each element broken
up into in UAL is listed in the first column. The last column
shows the CPU time of per particle per turn.

Table 2: List of pitch correction from analytical formula
and simulation of UAL.

Approach ωa−ω0
ω0

(×10−8) CPU time (ms)
Analytical formula 7.42
UAL, slices = 8 6.48 ± 0.01 0.86
UAL, slices = 32 7.34 ± 0.02 2.97
UAL, slices = 64 7.38 ± 0.02 5.81
UAL, slices = 128 7.39 ± 0.02 10.66
UAL, slices = 256 7.40 ± 0.02 21.72

SUMMARY

This paper has given a brief summary of the most promi-
nent sorts of accelerator simulation codes. The motivation
for this is the need for extraordinarily precise spin tracking
calculations required for interpreting high precision exper-
imental measurements of magnetic and, especially, elec-
tric dipole moments. The presentation has attempted to be
neutral as regards physical methods, but partial as regards
establishing an environment in which diverse methods of
calculation can be applied to multiple physical effects.
Many component errors and imperfections are capable

of producing behavior that can be misinterpreted as being
due to the particular dipole moment being measured. Ex-
amples are fringe fields, errors, nonlinearities, etc. In this
report just one (particularly simple)such effect has been in-
vestigated and compared with an analytic calculation. This
has been intended only as a prototype of the sorts of calcu-
lations and comparisons that will be required. This initial
step needs to be extended in many directions: new bench-
marks, new programs, especially from the mapping cate-
gory (like FMN and COSY), and new extensions encom-
passing all relevant physical effects.
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