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Abstract

The optimization of an accelerator system is important
in both design and upgrade stage, and many of them are
Multiobjective problems, i.e. searching for a balance be-
tween several quantities. A full understanding of this bal-
ance could provide the decision maker more information
on the final choice. In this paper we present the application
of an optimization algorithm called Multiobjective Genetic
Algorithm (MOGA) in two problems. One is the lattice of
a synchrotron light source (take ALS as an example) and
the other is a VHF gun.

INTRODUCTION

The optimization of an accelerator system is obviously
an important problem in both design and upgrade stage.
Depending on different system, storage ring or LINAC,
collider or light source, this could be minimizing the emit-
tance, optimizing beta functions and bunch length. For a
optimization algorithm, the challenges come from the con-
vergence of solutions, constraints on variables and objec-
tive functions, conflicting objective functions. In this pa-
per we will introduce an algorithm called multiobjective
genetic algorithm (MOGA), show the applications on two
problems, one is the lattice optimization for the Advanced
Light Source (ALS), a problem with strong constraints in
both variable space and objective space. The other is VHF
Gun, in which a single simulation cost a couple of hours,
therefore in order to get result in a reasonable amount of
time, the convergence speed becomes very important.

GENETIC ALGORITHM AND
MULTIOBJECTIVE OPTIMIZATION

Genetic algorithm (GA) is a search technique in opti-
mization, it was developed in 1970s [8, 7, 4] and now as a
class of evolutionary algorithms (EA). The outline of Ge-
netic Algorithm (GA) usually has four steps, first a set
of numbers in parameter space are chosen, i.e. the ini-
tial population, then they are paired to produce new can-
didate, we call them parents and children. This is called
crossover. The third step is mutation, where children are
given a random change according to certain strategy. The
last step mimics the nature select process, where the ob-
jective functions are evaluated for each child, and the chil-
dren are sorted according to their corresponding objective
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functions. This is a complete generation, and some good
children candidate are allowed to continue the evolution.

In the early development, the multiobjective optimiza-
tion problems (MOP) was converted to a single objective
optimization problem by weighted sum method. Later,
the truly multiobjective optimization with nondominated
sorting was developed based on GA [5]. The detailed
mathematical definition of dominance can be found in
ref. [4, 2, 10]. It extends the comparison between two
scalars to two vectors.

MOGA has been introduced into photoinjector de-
sign [2] and accelerator lattice optimization [6, 10]. The
comparison of MOGA and GLASS is also shown in [9].

Algorithm 1 Multi-Objective Genetic Algorithms
1: Initialize population (first generation, random)
2: repeat
3: select parents to generate children (crossover)
4: mutation(children)
5: evaluate(children)
6: merge(parents, children).
7: non-dominated sort(rank)
8: select half of (parents, children)
9: until reach a generation with the desired convergence

to the PO set

The structure of our MOGA implementation is shown in
algorithm. 1. The first population is initialized with uni-
formly distributed random numbers, as we will see in stor-
age ring lattice optimizations, most of these random popu-
lations at first did not give physical solutions due to trans-
verse stable condition.

Two parents are chosen from the population, and used
to generate two children. The newly generated values fol-
lows certain probability density function (PDF) as shown
in Fig. 1. Following Ref. [4] we are using polynomial PDF
with one parameter η to control the shape. This form is
convenient to include the boundaries without artificial cuts
when the new values are outside of it.

The “new born” children are applied with an operation of
mutation, this mimics the effect from nature environment.
We also choose a polynomial PDF to describe it. Fig. 2
shows the probability of the old value x = −1 will be mu-
tated to. It has equal probability to go less or greater than
-1.

After the new generation is produced, we then evalu-
ate the objective functions, which are the lattice functions
in our case. The results are ranked based on their objec-
tive functions and the violation to the constraints. Here
we also follow Dr. Deb’s approach [5], where Nondomi-
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Figure 1: PDF for crossover. This shows the variable
within range [-3,5] and two parents are at -1.5 and 2. η
controls different shape of PDF.
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Figure 2: PDF for mutation. Here shows PDF of an ex-
ample variable defined in range [-3,5] with a value -1. η
controls the shape of PDF.

nated sorting is used to find the Pareto optimal. This pro-
cess is repeated for the non-Pareto set. Those violating the
constraints have the lowest rank. A simple way to do this
would be building up a table (or matrix):

The table represents “dominance” relations between
each pair. Those candidates with empty column are not
dominated by any one and are called “nondominated set”.
Obviously the nondominated set has a rank 1. The can-
didates who are violating the constraints are not shown in
Table. 1. They can have a similar table, but anyone of them
are dominated by anyone in Table. 1.

LATTICE OPTIMIZATION FOR ALS

We use Advanced Light Source (ALS) as an example
to apply MOGA in lattice optimization problems. The
ALS is a 3rd generation synchrotron light source located

Figure 3: Nondominated Sorting. The candidates are in
two group separated by the constraints. The arrows rep-
resent the relation of dominance, and the dashed arrow is
valid if there are no constraints.

Table 1: Dominance table.
a1 a2 a3 a4 b1 b2 c1 c2

a1 1 1 1 1
a2 1 1
a3 1 1 1
a4 1
b1 1 1
b2 1
c1

c2

at Lawrence Berkeley National Laboratory optimized for
the generation of soft x-ray. The ALS is 200 m in circum-
ference and consists of 12 sectors. The lattice structure of
each of the sectors is a triple bend achromat. All sectors are
the same with the exception of three sections symmetrically
distributed along the ring where the central dipole is super-
conductive. In this paper we only optimize the sectors with
normal conducting dipoles, and the three superconductive
bends then can be matched.

The first problem we applied to optimize is the emittance
and beta function. In this problem, the emittance as one of
the most important quantities of all light sources need to be
minimized, while the beta function in this case want to be
around 1 meter. The constraints are transverse stability, i.e.
the one turn transfer matrix should have a trace in range
[-2,2], the maximum beta function less than 30 meters, and
the maximum dispersion less than a few centimeters. The
optimal results are shown in Fig. 4 and the corresponding
brightness change are shown in Fig. 5.

The optimal results are in two isolated regions, and the
history of evolution is presented in Fig. 6.

A second optimization on high-low beta is also carried
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Figure 4: Emittance and beta function of the optimal solu-
tions.

Figure 5: Brightness and emittance. The brightness is nor-
malized by the maximum one in this plot.

out on ALS lattice. Two sectors are treated as one with high
and low beta functions in each straight section. The low
beta is about 1 meter and the high beta is about 10 meter.
The third objective function is still emittance. Fig. 7 shows
Pareto optimal set (now is a surface in 3D) projected into
βhigh-βlow plane.

The lattice optimization problems usually have many
constraints, eight in the dynamics or the practical way. As
a dynamics system, many of the randomly generated value
can not give a physical solution. This could be a serious
problem for deterministic algorithms where extra efforts
are needed when the predicted solution fails. This effort is
first considering the constraints instead of objective func-
tions, therefore is quite different direction from the orig-
inal setup for objective functions. For MOGA, this kind
of problem does not exist, since it is population based and
uses the sorting to select/deselect candidates for the next
iteration. In this way, it can easily survive the objective-
functions-constraints conflict situations mentioned before.

Figure 6: Evolution history in parameter space. The color
represents how many generation the candidate in this re-
gion can survived without being replaced by better candi-
dates

Figure 7: Low beta

In next section we also show a VHF gun optimization prob-
lem, which does not have this dynamics stability problem,
but the computing time is long and fast convergence is quite
important.

VHF PHOTOINJECTOR OPTIMIZATION

MOGA was also applied on VHF photoinjector opti-
mization at LBNL [12]. The single calculation of beam
quantity needs a few hours. This makes the algorithm
requiring derivatives (approximation by finite difference
method) not practical.

Since MOGA is population based, no interaction be-
tween evaluation of each candidate, it is very suitable for
parallelization. We used the master-slave model to run
MOGA on a cluster with 128 CPUs. All nodes carry out the
beam simulation, while the master node do extra MOGA
optimizations which is significantly small effort compared
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with dynamics simulations.

Figure 8: Caption
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Figure 9: Caption

Fig. 8 shows the layout of a very simple case, to help
our understanding of dynamics and various limitations [].
Beam is launched from the left cavity, and pass through 6
cavities. The emittance and bunch length at s = 15 meter
is obtained from Astra as objective functions. The final
optimal solutions is shown in Fig. 9.
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