Author: Shankar, M.V.
Paper Title Page
WEA3O02 Recent Advancements and Deployments of EPICS Version 4 589
 
  • G.R. White, M.V. Shankar
    SLAC, Menlo Park, California, USA
  • A. Arkilic, L.R. Dalesio, M.A. Davidsaver, M.R. Kraimer, N. Malitsky, B.S. Martins
    BNL, Upton, Long Island, New York, USA
  • S.M. Hartman, K.-U. Kasemir
    ORNL, Oak Ridge, Tennessee, USA
  • D.G. Hickin
    DLS, Oxfordshire, United Kingdom
  • A.N. Johnson, S. Veseli
    ANL, Argonne, Ilinois, USA
  • T. Korhonen
    ESS, Lund, Sweden
  • R. Lange
    ITER Organization, St. Paul lez Durance, France
  • M. Sekoranja
    Cosylab, Ljubljana, Slovenia
  • G. Shen
    FRIB, East Lansing, Michigan, USA
 
  EPICS version 4 is a set of software modules that add to the base of the EPICS toolkit for advanced control systems. Version 4 adds the possibility of process variable values of structured data, an introspection interface for dynamic typing plus some standard types, high-performance streaming, and a new front-end processing database for managing complex data I/O. A synchronous RPC-style facility has also been added so that the EPICS environment supports service-oriented architecture. We introduce EPICS and the new features of version 4. Then we describe selected deployments, particularly for high-throughput experiment data transport, experiment data management, beam dynamics and infrastructure data.  
slides icon Slides WEA3O02 [2.413 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF030 The EPICS Archiver Appliance 761
 
  • M.V. Shankar, L.F. Li
    SLAC, Menlo Park, California, USA
  • M.A. Davidsaver
    BNL, Upton, New York, USA
  • M.G. Konrad
    FRIB, East Lansing, Michigan, USA
 
  The EPICS Archiver Appliance was developed by a collaboration of SLAC, BNL and FRIB to allow for the archival of millions of PVs, mainly focusing on data retrieval performance. It offers the ability to cluster appliances and to scale by adding appliances to the cluster. Multiple stages and an inbuilt process to move data between stages facilitates the usage of faster storage and the ability to decimate data as it is moved. An HTML management interface and scriptable business logic significantly simplifies administration. Well-defined customization hooks allow facilities to tailor the product to suit their requirements. Mechanisms to facilitate installation and migration have been developed. The system has been in production at SLAC for about 2 years now, at FRIB for about a year and is heading towards a production deployment at BNL. At SLAC, the system has significantly reduced maintenance costs while enabling new functionality that was not possible before. This paper presents an overview of the system and shares some of our experience with deploying and managing it at our facilities.  
poster icon Poster WEPGF030 [1.254 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)