Author: Ninin, P.
Paper Title Page
MOPGF132 Building an Interlock: Comparison of Technologies for Constructing Safety Interlocks 389
 
  • T. Hakulinen, F. Havart, P. Ninin, F. Valentini
    CERN, Geneva, Switzerland
 
  Interlocks are an important feature of both personnel and machine protection systems for mitigating risks inherent in operation of dangerous equipment. The purpose of an interlock is to secure specific equipment or entire systems under well defined conditions in order to prevent accidents from happening. Depending on specific requirements for the level of reliability, availability, speed, and cost of the interlock, various technologies are available. Different approaches are discussed, in particular in the context of personnel safety systems, which have been built or tested at CERN during the last few years. Technologies discussed include examples of programmable devices, PLCs and FPGAs, as well as wired logic based on relays and special logic cards.  
poster icon Poster MOPGF132 [1.307 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPGF143 Integration of Heterogeneous Access Control Functionalities Using the New Generation of NI cRIO 903x Controllers 424
 
  • F. Valentini, T. Hakulinen, L. Hammouti, P. Ninin
    CERN, Geneva, Switzerland
 
  Engineering of Personnel Protection Systems (PPS) in large research facilities, such CERN, represents nowadays a major challenge in terms of requirements for safety and access control functionalities. PPS are usually conceived as two separate independent entities: a Safety System dealing with machine interlocks and subject to rigid safe-ty standards (e.g. IEC-61508); and a conventional Access Control System made by integration of different COTS technologies. The latter provides a large palette of func-tionalities and tools intended either to assist users access-ing the controlled areas, either to automate a certain number of control room operator's tasks. In this paper we analyse the benefits in terms of performance, cost and system maintainability of adopting the new generation of NI multipurpose CRIO 903x controllers. These new de-vices allows an optimal integration of a large set of access control functionalities, namely: automatic control of mo-torized devices, identification/count of users in zone, im-plementation of dedicated anti-intrusion algorithms, graphical display of relevant information for local users, and remote control/monitoring for control room opera-tors.  
poster icon Poster MOPGF143 [3.045 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPGF012 Information Security Assessment of CERN Access and Safety Systems 713
 
  • T. Hakulinen, X.B. Costa Lopez, P. Ninin, P. Oser
    CERN, Geneva, Switzerland
 
  Access and safety systems are traditionally considered critical in organizations and they are therefore usually well isolated from the rest of the network. However, recent years have seen a number of cases, where such systems have been compromised even when in principle well protected. The tendency has also been to increase information exchange between these systems and the rest of the world to facilitate operation and maintenance, which further serves to make these systems vulnerable. In order to gain insight on the overall level of information security of CERN access and safety systems, a security assessment was carried out. This process consisted not only of a logical evaluation of the architecture and implementation, but also of active probing for various types of vulnerabilities on test bench installations.  
poster icon Poster WEPGF012 [1.052 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)