Paper | Title | Page |
---|---|---|
MOM302 | Python Software for Measuring Wavelength at Optically Pumped Polarized Ion Source (OPPIS) | 72 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. Often diagnostic tools are packaged with proprietary software and it is challenging to integrate with native environment. The HighFinesse Angstrom Wavemeter used at OPPIS experiment for laser wavelength measurement is controlled using commercial software not supported by RHIC style controls. This paper will describe the integration of such a complex system and use of python for cross platform data acquisition. |
||
Slides MOM302 [1.013 MB] | ||
Poster MOM302 [1.189 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPGF066 | Synchronized Ramping of Magnet Power Supplies for Streamlined Operation at Energy Recovery Linac (ERL) and Electron Lens (e-Lens) | 244 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. Synchronous ramping of an assembly of magnets is critical for operation of beam in an accelerator. Magnet currents must remain within the operational limits to avoid dis-alignment of electron beam. In order to comply with the design specifications of ERL and ELENS project , two different software control mechanisms have been developed. The ramp profile is automated and maintained by tracking current in all dipole magnets at ERL and superconducting solenoid magnets at ELENS. This mechanism speeds up operations and adds a level of protection. The purpose of this application is to reduce unnecessary interlocks of the personnel protection system. This paper will describe the power supply arrangement, communication mechanism and the state machine algorithm used for feedback and control. A report on operating experience will be presented. |
||
Poster MOPGF066 [2.018 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPGF155 | Design and Status for the Electron Lens Project at the Relativistic Heavy Ion Collider | 453 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The Electron Lens upgrade project at the Relativistic Heavy Ion Collider (RHIC) has reached an operational status, whereby intense, pulsed or DC beams of electrons are generated in order to interact with the RHIC polarized proton beams in both the Blue and Yellow Rings at the 10 o'clock Interaction Region. Interactions between the electrons and protons are utilized to counteract the beam-beam effect that arises from the desired polarized proton collisions, which result in a higher RHIC luminosity. A complex system for operating the e-lens has been developed, including superconducting and non-superconducting magnet controls, instrumentation systems, a COTS-based Machine Protection System, custom Blue and Yellow e-lens timing systems for synchronizing the electron beam with the RHIC timing system, beam alignment software tools for maximizing electron-proton collisions, as well as complex user interfaces to support routine operation of the system. e-lens software and hardware design will be presented, as well as recent updates to the system that were required in order to meet changing system requirements in preparation for the first operational run of the system. |
||
Poster MOPGF155 [1.831 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEC3O06 | ERL Time Management System | 636 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy. The Energy Recovery LINAC (ERL) at BNL is an R&D project. A timing system was developed in conjunction with other available timing systems in order to operate and synchronize instruments at the ERL. This paper describes the time management software which is responsible for automating the delay configuration based on beam power and instrument limitations, for maintaining beam operational parameters, and respond to machine protection system. |
||
Slides WEC3O06 [4.239 MB] | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |